This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2025 Bulgarian Winter Tournament, 11.4

Let $A$ be a set of $2025$ non-negative integers and $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ be a function with the following two properties: 1) For every two distinct positive integers $x,y$ there exists $a\in A$, such that $x-y$ divides $f(x+a) - f(y+a)$. 2) For every positive integer $N$ there exists a positive integer $t$ such that $f(x) \neq f(y)$ whenever $x,y \in [t, t+N]$ are distinct. Prove that there are infinitely many primes $p$ such that $p$ divides $f(x)$ for some positive integer $x$.

2020 AMC 10, 18

Tags: probability
An urn contains one red ball and one blue ball. A box of extra red and blue balls lie nearby. George performs the following operation four times: he draws a ball from the urn at random and then takes a ball of the same color from the box and returns those two matching balls to the urn. After the four iterations the urn contains six balls. What is the probability that the urn contains three balls of each color? $\textbf{(A) } \frac16 \qquad \textbf{(B) }\frac15 \qquad \textbf{(C) } \frac14 \qquad \textbf{(D) } \frac13 \qquad \textbf{(E) } \frac12$

1969 Yugoslav Team Selection Test, Problem 6

Let $E$ be the set of $n^2+1$ closed intervals on the real axis. Prove that there exists a subset of $n+1$ intervals that are monotonically increasing with respect to inclusion, or a subset of $n+1$ intervals none of which contains any other interval from the subset.

2014 AMC 12/AHSME, 5

Tags: ratio
Doug constructs a square window using $8$ equal-size panes of glass, as shown. The ratio of the height to width for each pane is $5:2$, and the borders around and between the panes are $2$ inches wide. In inches, what is the side length o the square window? [asy] fill((0,0)--(25,0)--(25,25)--(0,25)--cycle,grey); for(int i = 0; i < 4; ++i){ for(int j = 0; j < 2; ++j){ fill((6*i+2,11*j+3)--(6*i+5,11*j+3)--(6*i+5,11*j+11)--(6*i+2,11*j+11)--cycle,white); } }[/asy] $\textbf{(A) }26\qquad\textbf{(B) }28\qquad\textbf{(C) }30\qquad\textbf{(D) }32\qquad\textbf{(E) }34$

Kyiv City MO 1984-93 - geometry, 1984.10.5

The vertices of a regular hexagon $A_1,A_2,...,A_6$ lie respectively on the sides $B_1B_2$, $B_2B_3$, $B_3B_4$, $B_4B_5$, $B_5B_6$, $B_6B_1$ of a convex hexagon $B_1B_2B_3B_4B_5B_6$. Prove that $$S_{B_1B_2B_3B_4B_5B_6} \le \frac32 S_{A_1A_2A_3A_4A_5A_6}.$$

2009 District Olympiad, 3

Let $ f:[0,1]\longrightarrow\mathbb{R} $ be a continuous function such that $$ \int_0^1 (x-1)f(x)dx =0. $$ Show that: [b]a)[/b] There exists $ a\in (0,1) $ such that $ \int_0^a xf(x)dx =0. $ [b]b)[/b] There exists $ b\in (0,1) $ so that $ \int_0^b xf(x)dx=bf(b). $

2012 IFYM, Sozopol, 8

Tags: polygon , geometry
The lengths of the sides of a convex decagon are no greater than 1. Prove that for each inner point $M$ of the decagon there is at least one vertex $A$, for which $MA\leq \frac{\sqrt{5}+1}{2}$.

2005 Estonia National Olympiad, 1

Tags: geometry
Seven brothers bought a round pizza and cut it $12$ piece as shown in the figure. Of the six elder brothers, each took one piece of the shape of an equilateral triangle, the remaining $6$ edge pieces by the older brothers did not want, was given to the youngest brother. Did the youngest brother get it more or less a seal than his every older brother? [img]https://cdn.artofproblemsolving.com/attachments/0/7/2efaec7dab171b8bb239dc8eb282947a5c44b0.png[/img]

2018 PUMaC Algebra B, 5

Tags: algebra
Let $x_0, x_1, \ldots$ be a sequence of real numbers such that $x_n = \frac{1 + x_{n -1}}{x_{n - 2}}$ for $n \geq 2$. Find the number of ordered pairs of positive integers $(x_0, x_1)$ such that the sequence gives $x_{2018} = \frac{1}{1000}$.

2019 Indonesia MO, 5

Tags: algebra
Given that $a$ and $b$ are real numbers such that for infinitely many positive integers $m$ and $n$, \[ \lfloor an + b \rfloor \ge \lfloor a + bn \rfloor \] \[ \lfloor a + bm \rfloor \ge \lfloor am + b \rfloor \] Prove that $a = b$.

2013 Kosovo National Mathematical Olympiad, 1

Tags: inequalities
Which number is bigger $\sqrt[2012]{2012!}$ or $\sqrt[2013]{2013!}$.

2018 Chile National Olympiad, 3

With $2018$ points, a network composed of hexagons is formed as a sample the figure: [asy] unitsize(1 cm); int i; path hex = dir(30)--(0,1)--dir(150)--dir(210)--(0,-1)--dir(330)--cycle; draw(hex); draw(shift((sqrt(3),0))*(hex)); draw(shift((2*sqrt(3),0))*(hex)); draw(shift((4*sqrt(3),0))*(hex)); draw(shift((5*sqrt(3),0))*(hex)); dot((3*sqrt(3) - 0.3,0)); dot((3*sqrt(3),0)); dot((3*sqrt(3) + 0.3,0)); dot(dir(150)); dot(dir(210)); for (i = 0; i <= 5; ++i) { if (i != 3) { dot((0,1) + i*(sqrt(3),0)); dot(dir(30) + i*(sqrt(3),0)); dot(dir(330) + i*(sqrt(3),0)); dot((0,-1) + i*(sqrt(3),0)); } } dot(dir(150) + 4*(sqrt(3),0)); dot(dir(210) + 4*(sqrt(3),0)); [/asy] A bee and a fly play the following game: initially the bee chooses one of the $2018$ dots and paints it red, then the fly chooses one of the $2017$ unpainted dots and paint it blue. Then the bee chooses an unpainted point and paints it red and then the fly chooses an unpainted one and paints it blue and so they alternate. If at the end of the game there is an equilateral triangle with red vertices, the bee wins, otherwise Otherwise the fly wins. Determine which of the two insects has a winning strategy.

Ukrainian TYM Qualifying - geometry, 2010.3

Tags: distance , geometry
The following method of approximate measurement is known for distances. Suppose, for example, that the observer is on the river bank at point $C$ in order to measure its width. To do this, he fixes point $A$ on the opposite bank so that the angle between the shoreline and the line $CA$ is close to the line. Then the observer pulls forward the right hand with the raised thumb, closes left eye and aligns the raised finger with point $A$. Next, opens the left eye, closes right and estimates the distance between the point on the opposite bank to which the finger points, and point $A$. Multiply this distance by $10$ and get the approximate value of the distance to point $A$, ie the width of the river. Justify this method of measuring distance. [hide=original wording]Відомий наступний спосіб наближеного вимірювання відстані. Нехай, наприклад, спостерігач знаходиться на березі річки у точці C і має на меті виміряти її ширину. Для цього він фіксує точку A на протилежному березі так, щоб кут між лінією берега і прямою CA був близьким до прямого. Потім спостерігач витягує вперед праву руку з піднятим вгору великим пальцем, заплющує ліве око і суміщає піднятий палець з точкою A. Далі, відкриває ліве око, заплющує праве і оцінює відстань між точкою на протилежному березі, на яку вказує палець, і точкою A. Цю відстань множить на 10 і отримує наближене значення відстані до точки A, тобто ширини річки. Обґрунтуйте цей спосіб вимірювання відстані.[/hide]

1969 Spain Mathematical Olympiad, 3

A bag contains plastic cubes of the same size, whose faces have been painted in colors: white, red, yellow, green, blue and violet (without repeating a color on two faces of the same cube). How many of these cubes can there be distinguishable to each other?

2006 Petru Moroșan-Trident, 3

Tags: algebra
Calculate the sum $$ 2^n+2^{n-1}\cos\alpha +2^{n-2} \cos2\alpha +\cdots +2\cos (n-1)\alpha +\cos n\alpha , $$ where $ \alpha $ is a real number and $ n $ a natural one. [i]Dan Negulescu[/i]

2017 Putnam, A5

Tags:
Each of the integers from $1$ to $n$ is written on a separate card, and then the cards are combined into a deck and shuffled. Three players, $A,B,$ and $C,$ take turns in the order $A,B,C,A,\dots$ choosing one card at random from the deck. (Each card in the deck is equally likely to be chosen.) After a card is chosen, that card and all higher-numbered cards are removed from the deck, and the remaining cards are reshuffled before the next turn. Play continues until one of the three players wins the game by drawing the card numbered $1.$ Show that for each of the three players, there are arbitrarily large values of $n$ for which that player has the highest probability among the three players of winning the game.

2002 Estonia National Olympiad, 2

Do there exist distinct non-zero digits $a, b$ and $c$ such that the two-digit number $\overline{ab}$ is divisible by $c$, the number $\overline{bc}$ is divisible by $a$ and $\overline{ca}$, is divisible by $b$?

2024 Princeton University Math Competition, A5 / B7

It is election year in PUMACland, and for the presidential election there are $27$ people voting for either Vraj Patel or Vedant Shah. Each voter selects a candidate uniformly at random, and their ballots are labeled $1$ through $27.$ The election takes place as a series of rounds. In each round, the surviving ballots are sorted by label and separated into consecutive groups of three. From each group, the person with the most votes wins, and exactly one of the ballots bearing the winner’s name is allowed to proceed to the next round. This procedure continues until a single ballot remains, and the person whose name is on the ballot wins. Alice, Bob, and Carol submitted ballots numbered $1, 15,$ and $27,$ respectively. Suppose that Alice, Bob, and Carol had all flipped their votes. If the probability that the outcome of the election would have changed is $\tfrac{a}{b}$ for relatively prime positive integers $a, b,$ find $a + b.$

V Soros Olympiad 1998 - 99 (Russia), 11.1

Tags: algebra
Solve the equation $$x^5 + (x + 1)^5 + (x + 2)^5 + ... + (x + 1998)^5 = 0.$$

2013 China Team Selection Test, 2

For the positive integer $n$, define $f(n)=\min\limits_{m\in\Bbb Z}\left|\sqrt2-\frac mn\right|$. Let $\{n_i\}$ be a strictly increasing sequence of positive integers. $C$ is a constant such that $f(n_i)<\dfrac C{n_i^2}$ for all $i\in\{1,2,\ldots\}$. Show that there exists a real number $q>1$ such that $n_i\geqslant q^{i-1}$ for all $i\in\{1,2,\ldots \}$.

2013 JBMO TST - Turkey, 7

In a convex quadrilateral $ABCD$ diagonals intersect at $E$ and $BE = \sqrt{2}\cdot ED, \: \angle BEC = 45^{\circ}.$ Let $F$ be the foot of the perpendicular from $A$ to $BC$ and $P$ be the second intersection point of the circumcircle of triangle $BFD$ and line segment $DC$. Find $\angle APD$.

1967 IMO Shortlist, 4

Does there exist an integer such that its cube is equal to $3n^2 + 3n + 7,$ where $n$ is an integer.

Novosibirsk Oral Geo Oly VII, 2022.4

Fold the next seven corners into a rectangle. [img]https://cdn.artofproblemsolving.com/attachments/b/b/2b8b9d6d4b72024996a66d41f865afb91bb9b7.png[/img]

2002 China Team Selection Test, 2

Tags: incenter , geometry
$ \odot O_1$ and $ \odot O_2$ meet at points $ P$ and $ Q$. The circle through $ P$, $ O_1$ and $ O_2$ meets $ \odot O_1$ and $ \odot O_2$ at points $ A$ and $ B$. Prove that the distance from $ Q$ to the lines $ PA$, $ PB$ and $ AB$ are equal. (Prove the following three cases: $ O_1$ and $ O_2$ are in the common space of $ \odot O_1$ and $ \odot O_2$; $ O_1$ and $ O_2$ are out of the common space of $ \odot O_1$ and $ \odot O_2$; $ O_1$ is in the common space of $ \odot O_1$ and $ \odot O_2$, $ O_2$ is out of the common space of $ \odot O_1$ and $ \odot O_2$.

2011 JHMT, 5

Tags: geometry
Let $ABCD$ be a unit square. Point $E$ is on $BC$, point $F$ is on $DC$, $\vartriangle AEF$ is equilateral, and $GHIJ$ is a square in $\vartriangle AEF$ such that $GH$ is on $EF$. Compute the area of square $GHIJ$.