Found problems: 85335
2025 Abelkonkurransen Finale, 2b
Which positive integers $a$ have the property that \(n!-a\) is a perfect square for infinitely many positive integers \(n\)?
1997 Romania Team Selection Test, 4
Let $ABC$ be a triangle, $D$ be a point on side $BC$, and let $\mathcal{O}$ be the circumcircle of triangle $ABC$. Show that the circles tangent to $\mathcal{O},AD,BD$ and to $\mathcal{O},AD,DC$ are tangent to each other if and only if $\angle BAD=\angle CAD$.
[i]Dan Branzei[/i]
2021 LMT Spring, A11 B17
In $\triangle ABC$ with $\angle BAC = 60^{\circ}$ and circumcircle $\omega$, the angle bisector of $\angle BAC$ intersects side $\overline{BC}$ at point $D$, and line $AD$ is extended past $D$ to a point $A'$. Let points $E$ and $F$ be the feet of the perpendiculars of $A'$ onto lines $AB$ and $AC$, respectively. Suppose that $\omega$ is tangent to line $EF$ at a point $P$ between $E$ and $F$ such that $\tfrac{EP}{FP} = \tfrac{1}{2}$. Given that $EF=6$, the area of $\triangle ABC$ can be written as $\tfrac{m\sqrt{n}}{p}$, where $m$ and $p$ are relatively prime positive integers, and $n$ is a positive integer not divisible by the square of any prime. Find $m+n+p$.
[i]Proposed by Taiki Aiba[/i]
2015 Junior Regional Olympiad - FBH, 5
Prove that for every parititon of set $X=\{1,2,...,9\}$ on two disjoint sets at least one of them contains three elements such that sum of some two of them is equal to third
2021 AMC 12/AHSME Fall, 17
A bug starts at a vertex of a grid made of equilateral triangles of side length $1$. At each step the bug moves in one of the $6$ possible directions along the grid lines randomly and independently with equal probability. What is the probability that after $5$ moves the bug never will have been more than $1$ unit away from the starting position?
$\textbf{(A)}\ \frac{13}{108} \qquad\textbf{(B)}\ \frac{7}{54} \qquad\textbf{(C)}\ \frac{29}{216} \qquad\textbf{(D)}\
\frac{4}{27} \qquad\textbf{(E)}\ \frac{1}{16}$
CVM 2020, Problem 4
Consider an $ABCD$ parallelogram with $\overline{AD}$ $=$ $\overline{BD}$. Point E lies in segment $\overline{BD}$ in such a way that $\overline{AE}$ $=$ $\overline{DE}$. The extension of line $\overline{AE}$ cuts segment $\overline{BC}$ and $F$. if line $\overline{DF}$ is the bisector of the $\angle CED$. Find the value of the $\angle ABD$
$\textbf{4.1.}$ Point $E$ lies in segment $\overline{BD}$ means that exits a point $E$ in the segment $\overline{BD}$ in other words lies refers to the same thing found
[i]Proposed by Alicia Smith, Francisco Morazan[/i]
2007 National Olympiad First Round, 8
Starting from the number $123456789$, at each step, we are swaping two adjacent numbers which are different from zero, and then decreasing the two numbers by $1$. What is the sum of digits of the least number that can be get after finite steps?
$
\textbf{(A)}\ 0
\qquad\textbf{(B)}\ 1
\qquad\textbf{(C)}\ 3
\qquad\textbf{(D)}\ 5
\qquad\textbf{(E)}\ 9
$
1990 Balkan MO, 1
The sequence $ (a_{n})_{n\geq 1}$ is defined by $ a_{1} \equal{} 1, a_{2} \equal{} 3$, and $ a_{n \plus{} 2} \equal{} (n \plus{} 3)a_{n \plus{} 1} \minus{} (n \plus{} 2)a_{n}, \forall n \in \mathbb{N}$. Find all values of $ n$ for which $ a_{n}$ is divisible by $ 11$.
2020 Junior Macedonian National Olympiad, 1
Let $S$ be the set of all positive integers $n$ such that each of the numbers $n + 1$, $n + 3$, $n + 4$, $n + 5$, $n + 6$, and $n + 8$ is composite. Determine the largest integer $k$ with the following property: For each $n \in S$ there exist at least $k$ consecutive composite integers in the set
{$n, n +1, n + 2, n + 3, n + 4, n + 5, n + 6, n + 7, n + 8, n + 9$}.
2003 Bulgaria Team Selection Test, 3
Some of the vertices of a convex $n$-gon are connected by segments, such that any two of them have no common interior point. Prove that, for any $n$ points in general position, there exists a one-to-one correspondence between the points and the vertices of the $n$ gon, such that any two segments between the points, corresponding to the respective segments from the $n$ gon, have no common interior point.
2017 Irish Math Olympiad, 5
The sequence $a = (a_0, a_1,a_2,...)$ is defined by $a_0 = 0, a_1 =2$ and $$a_{n+2} = 2a_{n+1} + 41a_n$$Prove that $a_{2016}$ is divisible by $2017.$
2012 IMAC Arhimede, 4
Solve the following equations in the set of natural numbers:
a) $(5+11\sqrt2)^p=(11+5\sqrt2)^q$
b) $1005^x+2011^y=1006^z$
2018 CMIMC Individual Finals, 1
Alex has one-pound red bricks and two-pound blue bricks, and has 360 total pounds of brick. He observes that it is impossible to rearrange the bricks into piles that all weigh three pounds, but he can put them in piles that each weigh five pounds. Finally, when he tries to put them into piles that all have three bricks, he has one left over. If Alex has $r$ red bricks, find the number of values $r$ could take on.
2014 Estonia Team Selection Test, 5
In Wonderland there are at least $5$ towns. Some towns are connected directly by roads or railways. Every town is connected to at least one other town and for any four towns there exists some direct connection between at least three pairs of towns among those four. When entering the public transportation network of this land, the traveller must insert one gold coin into a machine, which lets him use a direct connection to go to the next town. But if the traveller continues travelling from some town with the same method of transportation that took him there, and he has paid a gold coin to get to this town, then going to the next town does not cost anything, but instead the traveller gains the coin he last used back. In other cases he must pay just like when starting travelling. Prove that it is possible to get from any town to any other town by using at most $2$ gold coins.
2008 Princeton University Math Competition, 6
The seven dwarves are at work on day when they find a large pile of diamonds. They want to split the diamonds evenly among them, but find that they would need to take away one diamond to split into seven equal piles. They are still arguing about this when they get home, so Snow White sends them to bed without supper. In the middle of the night, Sneezy wakes up and decides that he should get the extra diamond. So he puts one diamond aside, splits the remaining ones in to seven equal piles, and takes his pile along with the extra diamond. Then, he runs off with the diamonds. His sneeze wakes up Grumpy, who, thinking along the same lines, removes one diamond, divides the remainder into seven equal piles, and runs off. Finally, Sleepy, for the first time in his life, wakes up before sunrise and performs the same operation. When the remaining four dwarves arise, they find that the remaining diamonds can be split into $5$ equal piles. Doc suggests that Snow White should get a share, so they have no problem splitting the remaining diamonds. Happy, Dopey, Bashful, Doc, and Snow White live happily ever after.
What’s the smallest possible number of diamonds that the dwarves could have started out with?
2023 Vietnam Team Selection Test, 4
Given are two coprime positive integers $a, b$ with $b$ odd and $a>2$. The sequence $(x_n)$ is defined by $x_0=2, x_1=a$ and $x_{n+2}=ax_{n+1}+bx_n$ for $n \geq 1$. Prove that:
$a)$ If $a$ is even then there do not exist positive integers $m, n, p$ such that $\frac{x_m} {x_nx_p}$ is a positive integer.
$b)$ If $a$ is odd then there do not exist positive integers $m, n, p$ such that $mnp$ is even and $\frac{x_m} {x_nx_p}$ is a perfect square.
2014 IPhOO, 7
A uniform solid semi-circular disk of radius $R$ and negligible thickness rests on its diameter as shown. It is then tipped over by some angle $\gamma$ with respect to the table. At what minimum angle $\gamma$ will the disk lose balance and tumble over? Express your answer in degrees, rounded to the nearest integer.
[asy]
draw(arc((2,0), 1, 0,180));
draw((0,0)--(4,0));
draw((0,-2.5)--(4,-2.5));
draw(arc((3-sqrt(2)/2, -4+sqrt(2)/2+1.5), 1, -45, 135));
draw((3-sqrt(2), -4+sqrt(2)+1.5)--(3, -4+1.5));
draw(anglemark((3-sqrt(2), -4+sqrt(2)+1.5), (3, -4+1.5), (0, -4+1.5)));
label("$\gamma$", (2.8, -3.9+1.5), WNW, fontsize(8));
[/asy]
[i]Problem proposed by Ahaan Rungta[/i]
Croatia MO (HMO) - geometry, 2018.3
Let $k$ be a circle centered at $O$. Let $\overline{AB}$ be a chord of that circle and $M$ its midpoint. Tangent on $k$ at points $A$ and $B$ intersect at $T$. The line $\ell$ goes through $T$, intersect the shorter arc $AB$ at the point $C$ and the longer arc $AB$ at the point $D$, so that $|BC| = |BM|$. Prove that the circumcenter of the triangle $ADM$ is the reflection of $O$ across the line $AD$
2016 Thailand Mathematical Olympiad, 1
Let $ABC$ be a triangle with $AB \ne AC$. Let the angle bisector of $\angle BAC$ intersects $BC$ at $P$ and intersects the perpendicular bisector of segment $BC$ at $Q$. Prove that $\frac{PQ}{AQ} =\left( \frac{BC}{AB + AC}\right)^2$
2005 Junior Balkan Team Selection Tests - Romania, 15
Let $n>3$ be a positive integer. Consider $n$ sets, each having two elements, such that the intersection of any two of them is a set with one element. Prove that the intersection of all sets is non-empty.
[i]Sever Moldoveanu[/i]
2024 Bangladesh Mathematical Olympiad, P9
Let $ABC$ be a triangle and $M$ be the midpoint of side $BC$. The perpendicular bisector of $BC$ intersects the circumcircle of $\triangle ABC$ at points $K$ and $L$ ($K$ and $A$ lie on the opposite sides of $BC$). A circle passing through $L$ and $M$ intersects $AK$ at points $P$ and $Q$ ($P$ lies on the line segment $AQ$). $LQ$ intersects the circumcircle of $\triangle KMQ$ again at $R$. Prove that $BPCR$ is a cyclic quadrilateral.
2021-2022 OMMC, 6
Calvin makes a number. He starts with $1$, and on each move, he multiplies his current number by $3$, then adds $5$. After $10$ moves, find the sum of the digits (in base $10$) when Calvin's resulting number is expressed in base $9$.
[i]Proposed by Calvin Wang [/i]
2004 AMC 12/AHSME, 4
Bertha has $ 6$ daughters and no sons. Some of her daughters have $ 6$ daughters, and the rest have none. Bertha has a total of $ 30$ daughters and granddaughters, and no great-granddaughters. How many of Bertha's daughters and grand-daughters have no children?
$ \textbf{(A)}\ 22 \qquad \textbf{(B)}\ 23 \qquad \textbf{(C)}\ 24 \qquad \textbf{(D)}\ 25\qquad \textbf{(E)}\ 26$
1995 Baltic Way, 8
The real numbers $a,b$ and $c$ satisfy the inequalities $|a|\ge |b+c|,|b|\ge |c+a|$ and $|c|\ge |a+b|$. Prove that $a+b+c=0$.
1994 Turkey MO (2nd round), 4
Let $f: \mathbb{R}^{+}\rightarrow \mathbb{R}+$ be an increasing function. For each $u\in\mathbb{R}^{+}$, we denote $g(u)=\inf\{ f(t)+u/t \mid t>0\}$. Prove that:
$(a)$ If $x\leq g(xy)$, then $x\leq 2f(2y)$;
$(b)$ If $x\leq f(y)$, then $x\leq 2g(xy)$.