Found problems: 85335
2023 CUBRMC, Individual
[b]p1.[/b] Find the largest $4$ digit integer that is divisible by $2$ and $5$, but not $3$.
[b]p2.[/b] The diagram below shows the eight vertices of a regular octagon of side length $2$. These vertices are connected to form a path consisting of four crossing line segments and four arcs of degree measure $270^o$. Compute the area of the shaded region.
[center][img]https://cdn.artofproblemsolving.com/attachments/0/0/eec34d8d2439b48bb5cca583462c289287f7d0.png[/img][/center]
[b]p3.[/b] Consider the numbers formed by writing full copies of $2023$ next to each other, like so: $$2023202320232023...$$
How many copies of $2023$ are next to each other in the smallest multiple of $11$ that can be written in this way?
[b]p4.[/b] A positive integer $n$ with base-$10$ representation $n = a_1a_2 ...a_k$ is called [i]powerful [/i] if the digits $a_i$ are nonzero for all $1 \le i \le k$ and
$$n = a^{a_1}_1 + a^{a_2}_2 +...+ a^{a_k}_k .$$
What is the unique four-digit positive integer that is [i]powerful[/i]?
[b]p5.[/b] Six $(6)$ chess players, whose names are Alice, Bob, Crystal, Daniel, Esmeralda, and Felix, are sitting in a circle to discuss future content pieces for a show. However, due to fights they’ve had, Bob can’t sit beside Alice or Crystal, and Esmeralda can’t sit beside Felix. Determine the amount of arrangements the chess players can sit in. Two arrangements are the same if they only differ by a rotation.
[b]p6.[/b] Given that the infinite sum $\frac{1}{1^4} +\frac{1}{2^4} +\frac{1}{3^4} +...$ is equal to $\frac{\pi^4}{90}$, compute the value of
$$\dfrac{\dfrac{1}{1^4} +\dfrac{1}{2^4} +\dfrac{1}{3^4} +...}{\dfrac{1}{1^4} +\dfrac{1}{3^4} +\dfrac{1}{5^4} +...}$$
[b]p7.[/b] Triangle $ABC$ is equilateral. There are $3$ distinct points, $X$, $Y$ , $Z$ inside $\vartriangle ABC$ that each satisfy the property that the distances from the point to the three sides of the triangle are in ratio $1 : 1 : 2$ in some order. Find the ratio of the area of $\vartriangle ABC$ to that of $\vartriangle XY Z$.
[b]p8.[/b] For a fixed prime $p$, a finite non-empty set $S = \{s_1,..., s_k\}$ of integers is $p$-[i]admissible [/i] if there exists an integer $n$ for which the product $$(s_1 + n)(s_2 + n) ... (s_k + n)$$ is not divisible by $p$. For example, $\{4, 6, 8\}$ is $2$-[i]admissible[/i] since $(4+1)(6+1)(8+1) = 315$ is not divisible by $2$. Find the size of the largest subset of $\{1, 2,... , 360\}$ that is two-,three-, and five-[i]admissible[/i].
[b]p9.[/b] Kwu keeps score while repeatedly rolling a fair $6$-sided die. On his first roll he records the number on the top of the die. For each roll, if the number was prime, the following roll is tripled and added to the score, and if the number was composite, the following roll is doubled and added to the score. Once Kwu rolls a $1$, he stops rolling. For example, if the first roll is $1$, he gets a score of $1$, and if he rolls the sequence $(3, 4, 1)$, he gets a score of $3 + 3 \cdot 4 + 2 \cdot 1 = 17$. What is his expected score?
[b]p10.[/b] Let $\{a_1, a_2, a_3, ...\}$ be a geometric sequence with $a_1 = 4$ and $a_{2023} = \frac14$ . Let $f(x) = \frac{1}{7(1+x^2)}$. Find $$f(a_1) + f(a_2) + ... + f(a_{2023}).$$
[b]p11.[/b] Let $S$ be the set of quadratics $x^2 + ax + b$, with $a$ and $b$ real, that are factors of $x^{14} - 1$. Let $f(x)$ be the sum of the quadratics in $S$. Find $f(11)$.
[b]p12.[/b] Find the largest integer $0 < n < 100$ such that $n^2 + 2n$ divides $4(n- 1)! + n + 4$.
[b]p13.[/b] Let $\omega$ be a unit circle with center $O$ and radius $OQ$. Suppose $P$ is a point on the radius $OQ$ distinct from $Q$ such that there exists a unique chord of $\omega$ through $P$ whose midpoint when rotated $120^o$ counterclockwise about $Q$ lies on $\omega$. Find $OP$.
[b]p14.[/b] A sequence of real numbers $\{a_i\}$ satisfies
$$n \cdot a_1 + (n - 1) \cdot a_2 + (n - 2) \cdot a_3 + ... + 2 \cdot a_{n-1} + 1 \cdot a_n = 2023^n$$
for each integer $n \ge 1$. Find the value of $a_{2023}$.
[b]p15.[/b] In $\vartriangle ABC$, let $\angle ABC = 90^o$ and let $I$ be its incenter. Let line $BI$ intersect $AC$ at point $D$, and let line $CI$ intersect $AB$ at point $E$. If $ID = IE = 1$, find $BI$.
[b]p16.[/b] For a positive integer $n$, let $S_n$ be the set of permutations of the first $n$ positive integers. If $p = (a_1, ..., a_n) \in S_n$, then define the bijective function $\sigma_p : \{1,..., n\} \to \{1, ..., n\}$ such that $\sigma_p (i) = a_i$ for all integers $1 \le i \le n$.
For any two permutations $p, q \in S_n$, we say $p$ and $q$ are friends if there exists a third permutation $r \in S_n$ such that for all integers $1 \le i \le n$, $$\sigma_p(\sigma_r (i)) = \sigma_r(\sigma_q(i)).$$
Find the number of friends, including itself, that the permutation $(4, 5, 6, 7, 8, 9, 10, 2, 3, 1)$ has in $S_{10}$.
PS. You had better use hide for answers.
2009 Moldova Team Selection Test, 3
[color=darkred]A circle $ \Omega_1$ is tangent outwardly to the circle $ \Omega_2$ of bigger radius. Line $ t_1$ is tangent at points $ A$ and $ D$ to the circles $ \Omega_1$ and $ \Omega_2$ respectively. Line $ t_2$, parallel to $ t_1$, is tangent to the circle $ \Omega_1$ and cuts $ \Omega_2$ at points $ E$ and $ F$. Point $ C$ belongs to the circle $ \Omega_2$ such that $ D$ and $ C$ are separated by the line $ EF$. Denote $ B$ the intersection of $ EF$ and $ CD$. Prove that circumcircle of $ ABC$ is tangent to the line $ AD$.[/color]
2009 Hanoi Open Mathematics Competitions, 7
Let $a,b,c,d$ be positive integers such that $a+b+c+d=99$. Find the maximum and minimum of product $abcd$
2016 Singapore MO Open, 3
Let $n$ be a prime number. Show that there is a permutation $a_1,a_2,...,a_n$ of $1,2,...,n$ so that $a_1,a_1a_2,...,a_1a_2...a_n$ leave distinct remainders when divided by $n$
1949 Moscow Mathematical Olympiad, 171
* Prove that a number of the form $2^n$ for a positive integer $n$ may begin with any given combination of digits.
2011 Dutch IMO TST, 3
Let $\Gamma_1$ and $\Gamma_2$ be two intersecting circles with midpoints respectively $O_1$ and $O_2$, such that $\Gamma_2$ intersects the line segment $O_1O_2$ in a point $A$. The intersection points of $\Gamma_1$ and $\Gamma_2$ are $C$ and $D$. The line $AD$ intersects $\Gamma_1$ a second time in $S$. The line $CS$ intersects $O_1O_2$ in $F$. Let $\Gamma_3$ be the circumcircle of triangle $AD$. Let $E$ be the second intersection point of $\Gamma_1$ and $\Gamma_3$. Prove that $O_1E$ is tangent to $\Gamma_3$.
Ukraine Correspondence MO - geometry, 2007.11
Denote by $B_1$ and $C_1$, the midpoints of the sides $AB$ and $AC$ of the triangle $ABC$. Let the circles circumscribed around the triangles $ABC_1$ and $AB_1C$ intersect at points $A$ and $P$, and let the line $AP$ intersect the circle circumscribed around the triangle $ABC$ at points $A$ and $Q$. Find the ratio $\frac{AQ}{AP}$.
2010 LMT, 25-27
$25.$ Let $C$ be the answer to Problem $27.$ What is the $C$-th smallest positive integer with exactly four positive factors?
$26.$ Let $A$ be the answer to Problem $25.$ Determine the absolute value of the difference between the two positive integer roots of the quadratic equation $x^2-Ax+48=0$
$27.$ Let $B$ be the answer to Problem $26.$ Compute the smallest integer greater than $\frac{B}{\pi}$
1947 Putnam, A5
Let $a_1 , b_1 , c_1$ be positive real numbers whose sum is $1,$ and for $n=1, 2, \ldots$ we define
$$a_{n+1}= a_{n}^{2} +2 b_n c_n, \;\;\;b_{n+1}= b_{n}^{2} +2 a_n c_n, \;\;\; c_{n+1}= c_{n}^{2} +2 a_n b_n.$$
Show that $a_n , b_n ,c_n$ approach limits as $n\to \infty$ and find those limits.
2004 Harvard-MIT Mathematics Tournament, 6
Find the ordered quadruple of digits $(A,B,C,D)$ with $A > B > C > D$, such that
$$\begin{tabular}{ccccc}
& A & B & C & D \\
- & D & C & B & A \\
\hline
= & B & D & A & C \\
\end{tabular}$$
2016 Online Math Open Problems, 6
In a round-robin basketball tournament, each basketball team plays every other basketball team exactly once. If there are $20$ basketball teams, what is the greatest number of basketball teams that could have at least $16$ wins after the tournament is completed?
[i]Proposed by James Lin[/i]
2002 USA Team Selection Test, 1
Let $ ABC$ be a triangle, and $ A$, $ B$, $ C$ its angles. Prove that
\[ \sin\frac{3A}{2}+\sin\frac{3B}{2}+\sin\frac{3C}{2}\leq \cos\frac{A-B}{2}+\cos\frac{B-C}{2}+\cos\frac{C-A}{2}. \]
2024 New Zealand MO, 2
Prove the following inequality $$\dfrac{6}{2024^3} < \left(1-\dfrac{3}{4}\right)\left(1-\dfrac{3}{5}\right)\left(1-\dfrac{3}{6}\right)\left(1-\dfrac{3}{7}\right)\ldots\left(1-\dfrac{3}{2025}\right).$$
2015 ISI Entrance Examination, 7
Let $\gamma_1, \gamma_2,\gamma_3 $ be three circles of unit radius which touch each other externally. The common tangent to each pair of circles are drawn (and extended so that they intersect) and let the triangle formed by the common tangents be $\triangle XYZ$ . Find the length of each side of $\triangle XYZ$
2014 China Northern MO, 7
Prove that there exist infinitely many positive integers $n$ such that $3^n+2$ and $5^n+2$ are all composite numbers.
2015 Taiwan TST Round 2, 2
Construct a tetromino by attaching two $2 \times 1$ dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them $S$- and $Z$-tetrominoes, respectively.
Assume that a lattice polygon $P$ can be tiled with $S$-tetrominoes. Prove that no matter how we tile $P$ using only $S$- and $Z$-tetrominoes, we always use an even number of $Z$-tetrominoes.
[i]Proposed by Tamas Fleiner and Peter Pal Pach, Hungary[/i]
1972 Kurschak Competition, 2
A class has $n > 1$ boys and $n$ girls. For each arrangement $X$ of the class in a line let $f(X)$ be the number of ways of dividing the line into two non-empty segments, so that in each segment the number of boys and girls is equal. Let the number of arrangements with $f(X) = 0$ be $A$, and the number of arrangements with $f(X) = 1$ be $B$. Show that $B = 2A$.
2022 Spain Mathematical Olympiad, 2
Let $a,b,c,d$ be four positive real numbers. If they satisfy \[a+b+\frac{1}{ab}=c+d+\frac{1}{cd}\quad\text{and}\quad\frac1a+\frac1b+ab=\frac1c+\frac1d+cd\] then prove that at least two of the values $a,b,c,d$ are equal.
2012 Thailand Mathematical Olympiad, 8
$4n$ first grade students at Songkhla Primary School, including $2n$ boys and $2n$ girls, participate in a taekwondo tournament where every pair of students compete against each other exactly once. The tournament is scored as follows:
$\bullet$ In a match between two boys or between two girls, a win is worth $3$ points, a draw $1$ point, and a loss $0$ points.
$\bullet$ In a math between a boy and a girl, if the boy wins, he receives $2$ points, else he receives $0$ points. If the girl wins, she receives $3$ points, if she draws, she receives $2$ points, and if she loses, she receives $0$ points.
After the tournament, the total score of each student is calculated. Let $P$ be the number of matches ending in a draw, and let $Q$ be the total number of matches. Suppose that the maximum total score is $4n - 1$. Find $P/Q$.
Mathematical Minds 2024, P5
Let $n\geqslant 2$ be a fixed positive integer. Determine the minimum value of the expression $$\frac{a_{a_1}}{a_1}+\frac{a_{a_2}}{a_2}+\dots +\frac{a_{a_n}}{a_n},$$ where $a_1, a_2, \dots, a_n$ are positive integers at most $n$.
[i]Proposed by David Anghel[/i]
2014 South East Mathematical Olympiad, 1
Let $ABC$ be a triangle with $AB<AC$ and let $M $ be the midpoint of $BC$. $MI$ ($I$ incenter) intersects $AB$ at $D$ and $CI$ intersects the circumcircle of $ABC$ at $E$. Prove that $\frac{ED }{ EI} = \frac{IB }{IC}$
[img]https://cdn.artofproblemsolving.com/attachments/0/5/4639d82d183247b875128a842a013ed7415fba.jpg[/img]
[hide=.][url=http://artofproblemsolving.com/community/c6h602657p10667541]source[/url], translated by Antreas Hatzipolakis in fb, corrected by me in order to be compatible with it's figure[/hide]
2002 Cono Sur Olympiad, 4
Let $ABCD$ be a convex quadrilateral such that your diagonals $AC$ and $BD$ are perpendiculars. Let $P$ be the intersection of $AC$ and $BD$, let $M$ a midpoint of $AB$. Prove that the quadrilateral $ABCD$ is cyclic, if and only if, the lines $PM$ and $DC$ are perpendiculars.
2022 Brazil Team Selection Test, 3
Let $n$ and $k$ be two integers with $n>k\geqslant 1$. There are $2n+1$ students standing in a circle. Each student $S$ has $2k$ [i]neighbors[/i] - namely, the $k$ students closest to $S$ on the left, and the $k$ students closest to $S$ on the right.
Suppose that $n+1$ of the students are girls, and the other $n$ are boys. Prove that there is a girl with at least $k$ girls among her neighbors.
[i]Proposed by Gurgen Asatryan, Armenia[/i]
2010 Indonesia TST, 4
How many natural numbers $(a,b,n)$ with $ gcd(a,b)=1$ and $ n>1 $ such that the equation \[ x^{an} +y^{bn} = 2^{2010} \] has natural numbers solution $ (x,y) $
2022 Purple Comet Problems, 13
Find the number of positive divisors of $20^{22}$ that are perfect squares or perfect cubes.