This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2023 CCA Math Bonanza, I4

Tags:
What is the minimum possible perimeter of a right triangle with integer side lengths whose perimeter is equal to its area? [i]Individual #4[/i]

2005 Georgia Team Selection Test, 9

Tags: induction , algebra
Let $ a_{0},a_{1},\ldots,a_{n}$ be integers, one of which is nonzero, and all of the numbers are not less than $ \minus{} 1$. Prove that if \[ a_{0} \plus{} 2a_{1} \plus{} 2^{2}a_{2} \plus{} \cdots \plus{} 2^{n}a_{n} \equal{} 0,\] then $ a_{0} \plus{} a_{1} \plus{} \cdots \plus{} a_{n} > 0$.

2018 Hanoi Open Mathematics Competitions, 4

Tags: equation , algebra
Find the number of distinct real roots of the following equation $x^2 +\frac{9x^2}{(x + 3)^2} = 40$. A. $0$ B. $1$ C. $2$ D. $3$ E. $4$

2013 BAMO, 4

Consider a rectangular array of single digits $d_{i,j}$ with 10 rows and 7 columns, such that $d_{i+1,j}-d_{i,j}$ is always 1 or -9 for all $1 \leq i \leq 9$ and all $1 \leq j \leq 7$, as in the example below. For $1 \leq i \leq 10$, let $m_i$ be the median of $d_{i,1}$, ..., $d_{i,7}$. Determine the least and greatest possible values of the mean of $m_1$, $m_2$, ..., $m_{10}$. Example: [img]https://cdn.artofproblemsolving.com/attachments/8/a/b77c0c3aeef14f0f48d02dde830f979eca1afb.png[/img]

2004 Purple Comet Problems, 10

Tags:
One rainy afternoon you write the number $1$ once, the number $2$ twice, the number $3$ three times, and so forth until you have written the number $99$ ninety-nine times. What is the $2005$ th digit that you write?

2014 Tournament of Towns., 3

The entries of a $7 \times 5$ table are fi lled with numbers so that in each $2 \times 3$ rectangle (vertical or horizontal) the sum of numbers is $0$. For $100$ dollars Peter may choose any single entry and learn the number in it. What is the least amount of dollars he should spend in order to learn the total sum of numbers in the table for sure?

2004 National Olympiad First Round, 20

What is the largest real number $C$ that satisfies the inequality $x^2 \geq C \lfloor x \rfloor (x-\lfloor x \rfloor)$ for every real $x$? $ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}\ 9 \qquad\textbf{(E)}\ 25 $

2003 Cuba MO, 3

A $4 \times 4$ board has all its squares painted white. An allowed operation is to choose a rectangle that contains $3$ squares and paint each of the boxes as follows: a) If the box is white then it is painted black. b) If the box is black then it is painted white. Prove that by applying the allowed operation several times, it is impossible get the entire board painted black.

2016 Greece JBMO TST, 3

Positive integer $n$ is such that number $n^2-9$ has exactly $6$ positive divisors. Prove that GCD $(n-3, n+3)=1$

2012 Math Prize For Girls Problems, 14

Tags: quadratic
Let $k$ be the smallest positive integer such that the binomial coefficient $\binom{10^9}{k}$ is less than the binomial coefficient $\binom{10^9 + 1}{k - 1}$. Let $a$ be the first (from the left) digit of $k$ and let $b$ be the second (from the left) digit of $k$. What is the value of $10a + b$?

2024 Sharygin Geometry Olympiad, 8

Let $ABCD$ be a quadrilateral $\angle B = \angle D$ and $AD = CD$. The incircle of triangle $ABC$ touches the sides $BC$ and $AB$ at points $E$ and $F$ respectively. Prove that the midpoints of segments $AC, BD, AE,$ and $CF$ are concyclic.

2019 Vietnam National Olympiad, Day 2

There are some papers of the size $5\times 5$ with two sides which are divided into unit squares for both sides. One uses $n$ colors to paint each cell on the paper, one cell by one color, such that two cells on the same positions for two sides are painted by the same color. Two painted papers are consider as the same if the color of two corresponding cells are the same. Prove that there are no more than $$\frac{1}{8}\left( {{n}^{25}}+4{{n}^{15}}+{{n}^{13}}+2{{n}^{7}} \right)$$ pairwise distinct papers that painted by this way.

2003 AMC 10, 12

A point $ (x,y)$ is randomly picked from inside the rectangle with vertices $ (0,0)$, $ (4,0)$, $ (4,1)$, and $ (0,1)$. What is the probability that $ x<y$? $ \textbf{(A)}\ \frac{1}{8} \qquad \textbf{(B)}\ \frac{1}{4} \qquad \textbf{(C)}\ \frac{3}{8} \qquad \textbf{(D)}\ \frac{1}{2} \qquad \textbf{(E)}\ \frac{3}{4}$

1999 Mongolian Mathematical Olympiad, Problem 6

Find the minimum possible length of the sum of $1999$ unit vectors in the coordinate plane whose both coordinates are nonnegative.

PEN H Problems, 72

Find all pairs $(x, y)$ of positive rational numbers such that $x^{y}=y^{x}$.

1987 Putnam, A4

Tags:
Let $P$ be a polynomial, with real coefficients, in three variables and $F$ be a function of two variables such that \[ P(ux, uy, uz) = u^2 F(y-x,z-x) \quad \mbox{for all real $x,y,z,u$}, \] and such that $P(1,0,0)=4$, $P(0,1,0)=5$, and $P(0,0,1)=6$. Also let $A,B,C$ be complex numbers with $P(A,B,C)=0$ and $|B-A|=10$. Find $|C-A|$.

2004 Iran Team Selection Test, 3

Suppose that $ ABCD$ is a convex quadrilateral. Let $ F \equal{} AB\cap CD$, $ E \equal{} AD\cap BC$ and $ T \equal{} AC\cap BD$. Suppose that $ A,B,T,E$ lie on a circle which intersects with $ EF$ at $ P$. Prove that if $ M$ is midpoint of $ AB$, then $ \angle APM \equal{} \angle BPT$.

Kyiv City MO Seniors Round2 2010+ geometry, 2022.10.3

Tags: geometry , ratio
Let $AH_A, BH_B, CH_C$ be the altitudes of triangle $ABC$. Prove that if $\frac{H_BC}{AC} = \frac{H_CA}{AB}$, then the line symmetric to $BC$ with respect to line $H_BH_C$ is tangent to the circumscribed circle of triangle $H_BH_CA$. [i](Proposed by Mykhailo Bondarenko)[/i]

2024/2025 TOURNAMENT OF TOWNS, P3

Tags: geometry
It is known that each rectangular parallelepiped has the following property: the square of its volume is equal to the product of areas of its three faces sharing a common vertex. Does there exist a parallelepiped which has the same property but is not rectangular? Alexandr Bufetov

2009 AMC 10, 21

What is the remainder when $ 3^0\plus{}3^1\plus{}3^2\plus{}\ldots\plus{}3^{2009}$ is divided by $ 8$? $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 6$

ABMC Online Contests, 2023 Nov

[b]p1.[/b] There are $2024$ apples in a very large basket. First, Julie takes away half of the apples in the basket; then, Diane takes away $202$ apples from the remaining bunch. How many apples remain in the basket? [b]p2.[/b] The set of all permutations (different arrangements) of the letters in ”ABMC” are listed in alphabetical order. The first item on the list is numbered $1$, the second item is numbered $2$, and in general, the kth item on the list is numbered $k$. What number is given to ”ABMC”? [b]p3.[/b] Daniel has a water bottle that is three-quarters full. After drinking $3$ ounces of water, the water bottle is three-fifths full. The density of water is $1$ gram per milliliter, and there are around $28$ grams per ounce. How many milliliters of water could the bottle fit at full capacity? [b]p4.[/b] How many ways can four distinct $2$-by-$1$ rectangles fit on a $2$-by-$4$ board such that each rectangle is fully on the board? [b]p5.[/b] Iris and Ivy start reading a $240$ page textbook with $120$ left-hand pages and $120$ right-hand pages. Iris takes $4$ minutes to read each page, while Ivy takes $5$ minutes to read a left-hand page and $3$ minutes to read a right-hand page. Iris and Ivy move onto the next page only when both sisters have completed reading. If a sister finishes reading a page first, the other sister will start reading three times as fast until she completes the page. How many minutes after they start reading will both sisters finish the textbook? [b]p6.[/b] Let $\vartriangle ABC$ be an equilateral triangle with side length $24$. Then, let $M$ be the midpoint of $BC$. Define $P$ to be the set of all points $P$ such that $2PM = BC$. The minimum value of $AP$ can be expressed as $\sqrt{a}- b$, where $a$ and $b$ are positive integers. Find $a + b$. [b]p7.[/b] Jonathan has $10$ songs in his playlist: $4$ rap songs and $6$ pop songs. He will select three unique songs to listen to while he studies. Let $p$ be the probability that at least two songs are rap, and let $q$ be the probability that none of them are rap. Find $\frac{p}{q}$ . [b]p8.[/b] A number $K$ is called $6,8$-similar if $K$ written in base $6$ and $K$ written in base $8$ have the same number of digits. Find the number of $6,8$-similar values between $1$ and $1000$, inclusive. [b]p9.[/b] Quadrilateral $ABCD$ has $\angle ABC = 90^o$, $\angle ADC = 120^o$, $AB = 5$, $BC = 18$, and $CD = 3$. Find $AD^2$. [b]p10.[/b] Bob, Eric, and Raymond are playing a game. Each player rolls a fair $6$-sided die, and whoever has the highest roll wins. If players are tied for the highest roll, the ones that are tied reroll until one wins. At the start, Bob rolls a $4$. The probability that Eric wins the game can be expressed as $\frac{p}{q}$ where $p$ and $q$ are relatively prime positive integers. Find $p + q$. [b]p11.[/b] Define the following infinite sequence $s$: $$s = \left\{\frac92,\frac{99}{2^2},\frac{999}{2^3} , ... , \overbrace{\frac{999...999}{2^k}}^{k\,\,nines}, ...\right\}$$ The sum of the first $2024$ terms in $s$, denoted $S$, can be expressed as $$S =\frac{5^a - b}{4}+\frac{1}{2^c},$$ where $a, b$, and $c$ are positive integers. Find $a + b + c$. [b]p12.[/b] Andy is adding numbers in base $5$. However, he accidentally forgets to write the units digit of each number. If he writes all the consecutive integers starting at $0$ and ending at $50$ (base $10$) and adds them together, what is the difference between Andy’s sum and the correct sum? (Express your answer in base-$10$.) [b]p13.[/b] Let $n$ be the positive real number such that the system of equations $$y =\frac{1}{\sqrt{2024 - x^2}}$$ $$y =\sqrt{x^2 - n}$$ has exactly two real solutions for $(x, y)$: $(a, b)$ and $(-a, b)$. Then, $|a|$ can be expressed as $j\sqrt{k}$, where $j$ and $k$ are integers such that $k$ is not divisible by any perfect square other than $1$. Find $j · k$. [b]p14.[/b] Nakio is playing a game with three fair $4$-sided dice. But being the cheater he is, he has secretly replaced one of the three die with his own $4$-sided die, such that there is a $1/2$ chance of rolling a $4$, and a $1/6$ chance to roll each number from $1$ to $3$. To play, a random die is chosen with equal probability and rolled. If Nakio guesses the number that is on the die, he wins. Unfortunately for him, Nakio’s friends have an anti-cheating mechanism in place: when the die is picked, they will roll it three times. If each roll lands on the same number, that die is thrown out and one of the two unused dice is chosen instead with equal probability. If Nakio always guesses $4$, the probability that he wins the game can be expressed as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime. Find $m + n$. [b]p15.[/b] A particle starts in the center of a $2$m-by-$2$m square. It moves in a random direction such that the angle between its direction and a side of the square is a multiple of $30^o$. It travels in that direction at $1$ m/s, bouncing off of the walls of the square. After a minute, the position of the particle is recorded. The expected distance from this point to the start point can be written as $$\frac{1}{a}\left(b - c\sqrt{d}\right),$$ where $a$ and $b$ are relatively prime, and d is not divisible by any perfect square. Find $a + b + c + d$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 APMO, 4

In a small town, there are $n \times n$ houses indexed by $(i, j)$ for $1 \leq i, j \leq n$ with $(1, 1)$ being the house at the top left corner, where $i$ and $j$ are the row and column indices, respectively. At time 0, a fire breaks out at the house indexed by $(1, c)$, where $c \leq \frac{n}{2}$. During each subsequent time interval $[t, t+1]$, the fire fighters defend a house which is not yet on fire while the fire spreads to all undefended [i]neighbors[/i] of each house which was on fire at time t. Once a house is defended, it remains so all the time. The process ends when the fire can no longer spread. At most how many houses can be saved by the fire fighters? A house indexed by $(i, j)$ is a [i]neighbor[/i] of a house indexed by $(k, l)$ if $|i - k| + |j - l|=1$.

1955 AMC 12/AHSME, 5

Tags:
$ y$ varies inversely as the square of $ x$. When $ y\equal{}16$, $ x\equal{}1$. When $ x\equal{}8$, $ y$ equals: $ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 128 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ \frac{1}{4} \qquad \textbf{(E)}\ 1024$

Kyiv City MO Juniors Round2 2010+ geometry, 2019.7.3

In the quadrilateral $ABCD$ it is known that $\angle ABD= \angle DBC$ and $AD= CD$. Let $DH$ be the altitude of $\vartriangle ABD$. Prove that $| BC - BH | = HA$. (Hilko Danilo)

2015 BMT Spring, 16

A binary decision tree is a list of $n$ yes/no questions, together with instructions for the order in which they should be asked (without repetition). For instance, if $n = 3$, there are $12$ possible binary decision trees, one of which asks question $2$ first, then question $3$ (followed by question $ 1$) if the answer was yes or question $1$ (followed by question $3$) if the answer was no. Determine the greatest possible $k$ such that $2^k$ divides the number of binary decision trees on $n = 13$ questions.