This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2011 May Olympiad, 3

In a right triangle rectangle $ABC$ such that $AB = AC$, $M$ is the midpoint of $BC$. Let $P$ be a point on the perpendicular bisector of $AC$, lying in the semi-plane determined by $BC$ that does not contain $A$. Lines $CP$ and $AM$ intersect at $Q$. Calculate the angles that form the lines $AP$ and $BQ$.

2007 Germany Team Selection Test, 3

For $ x \in (0, 1)$ let $ y \in (0, 1)$ be the number whose $ n$-th digit after the decimal point is the $ 2^{n}$-th digit after the decimal point of $ x$. Show that if $ x$ is rational then so is $ y$. [i]Proposed by J.P. Grossman, Canada[/i]

2014 May Olympiad, 4

Let $ABC$ be a right triangle and isosceles, with $\angle C = 90^o$. Let $M$ be the midpoint of $AB$ and $N$ the midpoint of $AC$. Let $ P$ be such that $MNP$ is an equilateral triangle with $ P$ inside the quadrilateral $MBCN$. Calculate the measure of $\angle CAP$

1977 Polish MO Finals, 3

Consider the polynomial $W(x) = (x - a)^kQ(x)$, where $a \neq 0$, $Q$ is a nonzero polynomial, and $k$ a natural number. Prove that $W$ has at least $k + 1$ nonzero coefficients.

2011 Philippine MO, 2

In triangle $ABC$, let $X$ and $Y$ be the midpoints of $AB$ and $AC$, respectively. On segment $BC$, there is a point $D$, different from its midpoint, such that $\angle{XDY}=\angle{BAC}$. Prove that $AD\perp BC$.

2003 IberoAmerican, 1

Let $M=\{1,2,\dots,49\}$ be the set of the first $49$ positive integers. Determine the maximum integer $k$ such that the set $M$ has a subset of $k$ elements such that there is no $6$ consecutive integers in such subset. For this value of $k$, find the number of subsets of $M$ with $k$ elements with the given property.

2005 QEDMO 1st, 8 (Z2)

Prove that if $n$ can be written as $n=a^2+ab+b^2$, then also $7n$ can be written that way.

2008 Hong Kong TST, 1

Tags: algebra
Let $ f: Z \to Z$ be such that $ f(1) \equal{} 1, f(2) \equal{} 20, f(\minus{}4) \equal{} \minus{}4$ and $ f(x\plus{}y) \equal{} f(x) \plus{}f(y)\plus{}axy(x\plus{}y)\plus{}bxy\plus{}c(x\plus{}y)\plus{}4 \forall x,y \in Z$, where $ a,b,c$ are constants. (a) Find a formula for $ f(x)$, where $ x$ is any integer. (b) If $ f(x) \geq mx^2\plus{}(5m\plus{}1)x\plus{}4m$ for all non-negative integers $ x$, find the greatest possible value of $ m$.

2021 MIG, 4

Tags:
In a zoo, there are five more foxes than rabbits, and three more foxes than pandas. Are there more pandas or rabbits, and by how much more? $\textbf{(A) }\text{Pandas, }1\qquad\textbf{(B) }\text{Pandas, }2\qquad\textbf{(C) }\text{Rabbits, }1\qquad\textbf{(D) }\text{Rabbits, }2\qquad\textbf{(E) }\text{Rabbits, }3$

2012 Korea National Olympiad, 2

Let $ w $ be the incircle of triangle $ ABC $. Segments $ BC, CA $ meet with $ w $ at points $ D, E$. A line passing through $ B $ and parallel to $ DE $ meets $ w $ at $ F $ and $ G $. ($ F $ is nearer to $ B $ than $ G $.) Line $ CG $ meets $ w $ at $ H ( \ne G ) $. A line passing through $ G $ and parallel to $ EH $ meets with line $ AC $ at $ I $. Line $ IF $ meets with circle $ w $ at $ J (\ne F ) $. Lines $ CJ $ and $ EG $ meets at $ K $. Let $ l $ be the line passing through $ K $ and parallel to $ JD $. Prove that $ l, IF, ED $ meet at one point.

the 16th XMO, 2

In a triangle $ABC$ , let $O$ be the circumcenter , $AO$ meet $BC$ at $K$ , A circle $\Omega$ with the centre $T$ and the center $K$ and the radius $AK$ meet $AC$ again at $T$ , $D$ is a point on the plain satisfies that $BC$ is the bisector of the angle $\angle ABD$ , let the orthocenter of the triangle $ABC$ and $BCD$ be $M$ and $N$ . If $MN//AC$ than $DT$ is tangent to $\Omega$

2014 HMNT, 5

Tags: hmmt
Let $A,B,C,D,E$ be five points on a circle; some segments are drawn between the points so that each of the $5C2 = 10$ pairs of points is connected by either zero or one segments. Determine the number of sets of segments that can be drawn such that: • It is possible to travel from any of the five points to any other of the five points along drawn segments. • It is possible to divide the five points into two nonempty sets $S$ and $T$ such that each segment has one endpoint in $S$ and the other endpoint in $T$.

2014 Online Math Open Problems, 4

A crazy physicist has discovered a new particle called an emon. He starts with two emons in the plane, situated a distance $1$ from each other. He also has a crazy machine which can take any two emons and create a third one in the plane such that the three emons lie at the vertices of an equilateral triangle. After he has five total emons, let $P$ be the product of the $\binom 52 = 10$ distances between the $10$ pairs of emons. Find the greatest possible value of $P^2$. [i]Proposed by Yang Liu[/i]

2020 HMNT (HMMO), 10

Tags: algebra
Let $x$ and $y$ be non-negative real numbers that sum to $ 1$. Compute the number of ordered pairs $(a, b)$ with $a, b \in \{0, 1, 2, 3, 4\}$ such that the expression $x^ay^b + y^ax^b$ has maximum value $2^{1-a-b}$ .

2023 ELMO Shortlist, C8

Let \(n\ge3\) be a fixed integer, and let \(\alpha\) be a fixed positive real number. There are \(n\) numbers written around a circle such that there is exactly one \(1\) and the rest are \(0\)'s. An [i]operation[/i] consists of picking a number \(a\) in the circle, subtracting some positive real \(x\le a\) from it, and adding \(\alpha x\) to each of its neighbors. Find all pairs \((n,\alpha)\) such that all the numbers in the circle can be made equal after a finite number of operations. [i]Proposed by Anthony Wang[/i]

1895 Eotvos Mathematical Competition, 1

Prove that there are exactly $2(2^{n-1}-1)$ ways of dealing $n$ cards to two persons. (The persons may receive unequal numbers of cards.)

1979 Miklós Schweitzer, 9

Let us assume that the series of holomorphic functions $ \sum_{k=1}^{\infty}f_k(z)$ is absolutely convergent for all $ z \in \mathbb{C}$. Let $ H \subseteq \mathbb{C}$ be the set of those points where the above sum funcion is not regular. Prove that $ H$ is nowhere dense but not necessarily countable. [i]L. Kerchy[/i]

2012 Chile National Olympiad, 4

Consider an isosceles triangle $ABC$, where $AB = AC$. $D$ is a point on the $AC$ side and $P$ a point on the segment $BD$ so that the angle $\angle APC = 90^o$ and $ \angle ABP = \angle BCP $. Determine the ratio $AD: DC$.

2016 Romanian Master of Mathematics, 2

Given positive integers $m$ and $n \ge m$, determine the largest number of dominoes ($1\times2$ or $2 \times 1$ rectangles) that can be placed on a rectangular board with $m$ rows and $2n$ columns consisting of cells ($1 \times 1$ squares) so that: (i) each domino covers exactly two adjacent cells of the board; (ii) no two dominoes overlap; (iii) no two form a $2 \times 2$ square; and (iv) the bottom row of the board is completely covered by $n$ dominoes.

2012 NIMO Problems, 8

Tags:
Compute the number of sequences of real numbers $a_1, a_2, a_3, \dots, a_{16}$ satisfying the condition that for every positive integer $n$, \[ a_1^n + a_2^{2n} + \dots + a_{16}^{16n} = \left \{ \begin{array}{ll} 10^{n+1} + 10^n + 1 & \text{for even } n \\ 10^n - 1 & \text{for odd } n \end{array} \right. . \][i]Proposed by Evan Chen[/i]

Russian TST 2014, P1

A regular 1001-gon is drawn on a board, the vertiecs of which are numbered with $1,2,\ldots,1001.$ Is it possible to label the vertices of a cardboard 1001-gon with the numbers $1,2,\ldots,1001$ such that for any overlap between the two 1001-gons, there are two vertices with the same number one over the other? Note that the cardboard polygon can be inverted.

2000 Brazil Team Selection Test, Problem 4

Let $n,k$ be positive integers such that $n$ is not divisible by $3$ and $k\ge n$. Prove that there is an integer $m$ divisible by $n$ whose sum of digits in base $10$ equals $k$.

2002 Italy TST, 2

On a soccer tournament with $n\ge 3$ teams taking part, several matches are played in such a way that among any three teams, some two play a match. $(a)$ If $n=7$, find the smallest number of matches that must be played. $(b)$ Find the smallest number of matches in terms of $n$.

2009 Princeton University Math Competition, 1

Find the root that the following three polynomials have in common: \begin{align*} & x^3+41x^2-49x-2009 \\ & x^3 + 5x^2-49x-245 \\ & x^3 + 39x^2 - 117x - 1435\end{align*}

2016 Saudi Arabia IMO TST, 2

Tags: divisibility
Let $a$ be a positive integer. Find all prime numbers $ p $ with the following property: there exist exactly $ p $ ordered pairs of integers $ (x, y)$, with $ 0 \leq  x, y \leq p - 1 $, such that $ p $ divides $ y^2 - x^3 - a^2x $.