This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2021 Macedonian Mathematical Olympiad, Problem 1

Let $(a_n)^{+\infty}_{n=1}$ be a sequence defined recursively as follows: $a_1=1$ and $$a_{n+1}=1 + \sum\limits_{k=1}^{n}ka_k$$ For every $n > 1$, prove that $\sqrt[n]{a_n} < \frac {n+1}{2}$.

2004 All-Russian Olympiad, 3

Let $ ABCD$ be a quadrilateral which is a cyclic quadrilateral and a tangent quadrilateral simultaneously. (By a [i]tangent quadrilateral[/i], we mean a quadrilateral that has an incircle.) Let the incircle of the quadrilateral $ ABCD$ touch its sides $ AB$, $ BC$, $ CD$, and $ DA$ in the points $ K$, $ L$, $ M$, and $ N$, respectively. The exterior angle bisectors of the angles $ DAB$ and $ ABC$ intersect each other at a point $ K^{\prime}$. The exterior angle bisectors of the angles $ ABC$ and $ BCD$ intersect each other at a point $ L^{\prime}$. The exterior angle bisectors of the angles $ BCD$ and $ CDA$ intersect each other at a point $ M^{\prime}$. The exterior angle bisectors of the angles $ CDA$ and $ DAB$ intersect each other at a point $ N^{\prime}$. Prove that the straight lines $ KK^{\prime}$, $ LL^{\prime}$, $ MM^{\prime}$, and $ NN^{\prime}$ are concurrent.

2005 France Team Selection Test, 1

Let $x$, $y$ be two positive integers such that $\displaystyle 3x^2+x=4y^2+y$. Prove that $x-y$ is a perfect square.

2017 Korea Junior Math Olympiad, 8

For a positive integer $n$, there is a school with $n$ people. For a set $X$ of students in this school, if any two students in $X$ know each other, we call $X$ [i]well-formed[/i]. If the maximum number of students in a well-formed set is $k$, show that the maximum number of well-formed sets is not greater than $3^{(n+k)/3}$. Here, an empty set and a set with one student is regarded as well-formed as well.

2003 Olympic Revenge, 7

Let $X$ be a subset of $R_{+}^{*}$ with $m$ elements. Find $X$ such that the number of subsets with the same sum is maximum.

1972 Miklós Schweitzer, 11

We throw $ N$ balls into $ n$ urns, one by one, independently and uniformly. Let $ X_i\equal{}X_i(N,n)$ be the total number of balls in the $ i$th urn. Consider the random variable \[ y(N,n)\equal{}\min_{1 \leq i \leq n}|X_i\minus{}\frac Nn|.\] Verify the following three statements: (a) If $ n \rightarrow \infty$ and $ N/n^3 \rightarrow \infty$, then \[ P \left(\frac{y(N,n)}{\frac 1n \sqrt{\frac Nn}}<x \right) \rightarrow 1\minus{}e^{\minus{}x\sqrt{2/ \pi}} \;\textrm{for all}\ \; x>0 \ .\] (b) If $ n\rightarrow \infty$ and $ N/n^3 \leq K$ ($ K$ constant), then for any $ \varepsilon > 0$ there is an $ A > 0$ such that \[ P(y(N,n) < A) > 1\minus{}\varepsilon .\] (c) If $ n \rightarrow \infty$ and $ N/n^3 \rightarrow 0$ then \[ P(y(N,n) < 1) \rightarrow 1.\] [i]P. Revesz[/i]

2007 Indonesia TST, 1

Given triangle $ ABC$ and its circumcircle $ \Gamma$, let $ M$ and $ N$ be the midpoints of arcs $ BC$ (that does not contain $ A$) and $ CA$ (that does not contain $ B$), repsectively. Let $ X$ be a variable point on arc $ AB$ that does not contain $ C$. Let $ O_1$ and $ O_2$ be the incenter of triangle $ XAC$ and $ XBC$, respectively. Let the circumcircle of triangle $ XO_1O_2$ meets $ \Gamma$ at $ Q$. (a) Prove that $ QNO_1$ and $ QMO_2$ are similar. (b) Find the locus of $ Q$ as $ X$ varies.

1999 Junior Balkan Team Selection Tests - Romania, 1

Find a relation between the angles of a triangle such that this could be separated in two isosceles triangles by a line. [i]Dan Brânzei[/i]

2009 Kurschak Competition, 3

Tags: function , algebra
Find all functions $f:\mathbb{Z}\to \mathbb{Q}$ with the following properties: if $f(x)<c<f(y)$ for some rational $c$, then $f$ takes on the value of $c$, and \[f(x)+f(y)+f(z)=f(x)f(y)f(z)\] whenever $x+y+z=0$.

2021 Science ON grade VII, 1

Tags: set , number theory
Supoose $A$ is a set of integers which contains all integers that can be written as $2^a-2^b$, $a,b\in \mathbb{Z}_{\ge 1}$ and also has the property that $a+b\in A$ whenever $a,b\in A$. Prove that if $A$ contains at least an odd number, then $A=\mathbb{Z}$. [i] (Andrei Bâra)[/i]

1991 China Team Selection Test, 1

Tags: geometry
We choose 5 points $A_1, A_2, \ldots, A_5$ on a circumference of radius 1 and centre $O.$ $P$ is a point inside the circle. Denote $Q_i$ as the intersection of $A_iA_{i+2}$ and $A_{i+1}P$, where $A_7 = A_2$ and $A_6 = A_1.$ Let $OQ_i = d_i, i = 1,2, \ldots, 5.$ Find the product $\prod^5_{i=1} A_iQ_i$ in terms of $d_i.$

2012 Olympic Revenge, 6

Let $ABC$ be an scalene triangle and $I$ and $H$ its incenter, ortocenter respectively. The incircle touchs $BC$, $CA$ and $AB$ at $D,E$ an $F$. $DF$ and $AC$ intersects at $K$ while $EF$ and $BC$ intersets at $M$. Shows that $KM$ cannot be paralel to $IH$. PS1: The original problem without the adaptation apeared at the Brazilian Olympic Revenge 2011 but it was incorrect. PS2:The Brazilian Olympic Revenge is a competition for teachers, and the problems are created by the students. Sorry if I had some English mistakes here.

2006 Estonia Team Selection Test, 5

Let $a_1, a_2, a_3, ...$ be a sequence of positive real numbers. Prove that for any positive integer $n$ the inequality holds $\sum_{i=1}^n b_i^2 \le 4 \sum_{i=1}^n a_i^2$ where $b_i$ is the arithmetic mean of the numbers $a_1, a_2, ..., a_n$

2007 Kyiv Mathematical Festival, 1

Find all pairs of positive integers $(a,b)$ such that $\sqrt{a-1}+\sqrt{b-1}=\sqrt{ab-1}.$

2005 Purple Comet Problems, 19

Tags: function
Let $x$ and $y$ be integers satisfying both $x^2 - 16x + 3y = 20$ and $y^2 + 4y - x = -12$. Find $x + y$.

2004 Irish Math Olympiad, 1

Determine all pairs of prime numbers $(p, q)$, with $2 \leq p, q < 100$, such that $p+6, p+10, q+4, q+10$ and $p+q+1$ are all prime numbers.

2015 BMT Spring, 3

How many ways are there to place the numbers $2, 3, . . . , 10$ in a $3 \times 3$ grid, such that any two numbers that share an edge are mutually prime?

1969 Czech and Slovak Olympiad III A, 3

Let $p$ be a prime. How many different (infinite) sequences $\left(a_k\right)_{k\ge0}$ exist such that for every positive integer $n$ \[\frac{a_0}{a_1}+\frac{a_0}{a_2}+\cdots+\frac{a_0}{a_n}+\frac{p}{a_{n+1}}=1?\]

2001 Estonia National Olympiad, 5

Tags: table , max , combinatorics
A table consisting of $9$ rows and $2001$ columns is filfed with integers $1,2,..., 2001$ in such a way that each of these integers occurs in the table exactly $9$ times and the integers in any column differ by no more than $3$. Find the maximum possible value of the minimal column sum (sum of the numbers in one column).

1999 Croatia National Olympiad, Problem 2

Let $n>1$ be an integer. Find the number of permutations $(a_1,a_2,\ldots,a_n)$ of the numbers $1,2,\ldots,n$ such that $a_i>a_{i+1}$ holds for exactly one $i\in\{1,2,\ldots,n-1\}$.

1999 AMC 12/AHSME, 8

Tags:
At the end of $ 1994$, Walter was half as old as his grandmother. The sum of the years in which they were born was $ 3838$. How old will Walter be at the end of $ 1999$? $ \textbf{(A)}\ 48 \qquad \textbf{(B)}\ 49\qquad \textbf{(C)}\ 53\qquad \textbf{(D)}\ 55\qquad \textbf{(E)}\ 101$

2021 Science ON Juniors, 3

Circles $\omega_1$ and $\omega_2$ are externally tangent to each other at $P$. A random line $\ell$ cuts $\omega_1$ at $A$ and $C$ and $\omega_2$ at $B$ and $D$ (points $A,C,B,D$ are in this order on $\ell$). Line $AP$ meets $\omega_2$ again at $E$ and line $BP$ meets $\omega_1$ again at $F$. Prove that the radical axis of circles $(PCD)$ and $(PEF)$ is parallel to $\ell$. \\ \\ [i](Vlad Robu)[/i]

2013 Romanian Masters In Mathematics, 2

Does there exist a pair $(g,h)$ of functions $g,h:\mathbb{R}\rightarrow\mathbb{R}$ such that the only function $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfying $f(g(x))=g(f(x))$ and $f(h(x))=h(f(x))$ for all $x\in\mathbb{R}$ is identity function $f(x)\equiv x$?

2007 ITest, 48

Let $a$ and $b$ be relatively prime positive integers such that $a/b$ is the maximum possible value of \[\sin^2x_1+\sin^2x_2+\sin^2x_3+\cdots+\sin^2x_{2007},\] where, for $1\leq i\leq 2007$, $x_i$ is a nonnegative real number, and \[x_1+x_2+x_3+\cdots+x_{2007}=\pi.\] Find the value of $a+b$.

2010 Portugal MO, 1

Giraldo wrote five distinct natural numbers on the vertices of a pentagon. And next he wrote on each side of the pentagon the least common multiple of the numbers written of the two vertices who were on that side and noticed that the five numbers written on the sides were equal. What is the smallest number Giraldo could have written on the sides?