This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2020 SIME, 3

Tags:
Real numbers $x, y > 1$ are chosen such that the three numbers \[\log_4x, \; 2\log_xy, \; \log_y2\] form a geometric progression in that order. If $x + y = 90$, then find the value of $xy$.

2017 USAMTS Problems, 3

Tags:
Do there exist two polygons such that, by putting them together in three different ways (without holes, overlap, or reflections), we can obtain first a triangle, then a convex quadrilateral, and lastly a convex pentagon?

2017 Online Math Open Problems, 6

Tags:
Let $ABCDEF$ be a regular hexagon with side length 10 inscribed in a circle $\omega$. $X$, $Y$, and $Z$ are points on $\omega$ such that $X$ is on minor arc $AB$, $Y$ is on minor arc $CD$, and $Z$ is on minor arc $EF$, where $X$ may coincide with $A$ or $B$ (and similarly for $Y$ and $Z$). Compute the square of the smallest possible area of $XYZ$. [i]Proposed by Michael Ren[/i]

2016 HMNT, 1

Tags: geometry
Two circles centered at $O_1$ and $O_2$ have radii $2$ and $3$ and are externally tangent at $P$. The common external tangent of the two circles intersects the line $O_1O_2$ at $Q$. What is the length of $PQ$ ?

2017 Online Math Open Problems, 26

Tags:
Define a sequence of polynomials $P_0,P_1,...$ by the recurrence $P_0(x)=1, P_1(x)=x, P_{n+1}(x) = 2xP_n(x)-P_{n-1}(x)$. Let $S=\left|P_{2017}'\left(\frac{i}{2}\right)\right|$ and $T=\left|P_{17}'\left(\frac{i}{2}\right)\right|$, where $i$ is the imaginary unit. Then $\frac{S}{T}$ is a rational number with fractional part $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $m$. [i]Proposed by Tristan Shin[/i]

2012 Abels Math Contest (Norwegian MO) Final, 1a

Berit has $11$ twenty kroner coins, $14$ ten kroner coins, and $12$ five kroner coins. An exchange machine can exchange three ten kroner coins into one twenty kroner coin and two five kroner coins, and the reverse. It can also exchange two twenty kroner coins into three ten kroner coins and two five kroner coins, and the reverse. (i) Can Berit get the same number of twenty kroner and ten kroner coins, but no five kroner coins? (ii) Can she get the same number each of twenty kroner, ten kroner, and five kroner coins?

1963 Poland - Second Round, 3

Solve the system of equations in integers $$x + y + z = 3$$ $$x^3 + y^3 + z^3 = 3$$

2016 Vietnam National Olympiad, 2

a) Let $(a_n)$ be the sequence defined by $a_n=\ln (2n^2+1)-\ln (n^2+n+1)\,\,\forall n\geq 1.$ Prove that the set $\{n\in\mathbb{N}|\,\{a_n\}<\dfrac{1}{2}\}$ is a finite set; b) Let $(b_n)$ be the sequence defined by $a_n=\ln (2n^2+1)+\ln (n^2+n+1)\,\,\forall n\geq 1$. Prove that the set $\{n\in\mathbb{N}|\,\{b_n\}<\dfrac{1}{2016}\}$ is an infinite set.

2012 Today's Calculation Of Integral, 784

Define for positive integer $n$, a function $f_n(x)=\frac{\ln x}{x^n}\ (x>0).$ In the coordinate plane, denote by $S_n$ the area of the figure enclosed by $y=f_n(x)\ (x\leq t)$, the $x$-axis and the line $x=t$ and denote by $T_n$ the area of the rectagle with four vertices $(1,\ 0),\ (t,\ 0),\ (t,\ f_n(t))$ and $(1,\ f_n(t))$. (1) Find the local maximum $f_n(x)$. (2) When $t$ moves in the range of $t>1$, find the value of $t$ for which $T_n(t)-S_n(t)$ is maximized. (3) Find $S_1(t)$ and $S_n(t)\ (n\geq 2)$. (4) For each $n\geq 2$, prove that there exists the only $t>1$ such that $T_n(t)=S_n(t)$. Note that you may use $\lim_{x\to\infty} \frac{\ln x}{x}=0.$

2025 India STEMS Category A, 6

Let $P \in \mathbb{R}[x]$. Suppose that the multiset of real roots (where roots are counted with multiplicity) of $P(x)-x$ and $P^3(x)-x$ are distinct. Prove that for all $n\in \mathbb{N}$, $P^n(x)-x$ has at least $\sigma(n)-2$ distinct real roots. (Here $P^n(x):=P(P^{n-1}(x))$ with $P^1(x) = P(x)$, and $\sigma(n)$ is the sum of all positive divisors of $n$). [i]Proposed by Malay Mahajan[/i]

Swiss NMO - geometry, 2008.1

Let $ABC$ be a triangle with $\angle BAC \ne 45^o$ and $\angle ABC \ne 135^o$. Let $P$ be the point on the line $AB$ with $\angle CPB = 45^o$. Let $O_1$ and $O_2$ be the centers of the circumcircles of the triangles $ACP$ and $BCP$ respectively. Show that the area of the square $CO_1P O_2$ is equal to the area of the triangle $ABC$.

2019 PUMaC Team Round, 2

In a standard game of Rock–Paper–Scissors, two players repeatedly choose between rock, paper, and scissors, until they choose different options. Rock beats scissors, scissors beats paper, and paper beats rock. Nathan knows that on each turn, Richard randomly chooses paper with probability $33\%$, scissors with probability $44\%$, and rock with probability $23\%$. If Nathan plays optimally against Richard, the probability that Nathan wins is expressible as $a/b$ where $a$ and $b$ are coprime positive integers. Find $a + b$.

1978 IMO Shortlist, 17

Prove that for any positive integers $x, y, z$ with $xy-z^2 = 1$ one can find non-negative integers $a, b, c, d$ such that $x = a^2 + b^2, y = c^2 + d^2, z = ac + bd$. Set $z = (2q)!$ to deduce that for any prime number $p = 4q + 1$, $p$ can be represented as the sum of squares of two integers.

2018 Balkan MO, 3

Alice and Bob play the following game: They start with non-empty piles of coins. Taking turns, with Alice playing first, each player choose a pile with an even number of coins and moves half of the coins of this pile to the other pile. The game ends if a player cannot move, in which case the other player wins. Determine all pairs $(a,b)$ of positive integers such that if initially the two piles have $a$ and $b$ coins respectively, then Bob has a winning strategy. Proposed by Dimitris Christophides, Cyprus

2023 South Africa National Olympiad, 2

$ABCD$ is a cyclic quadrilateral with $\angle BAD=90^\circ$ and $\angle ABC>90^\circ$. $AB$ is extended to a point $E$ such that $\angle AEC=90^\circ$.If $AB=7,BE=9,$ and $EC=12$,calculate $AD$.

2023 Thailand Online MO, 2

Let $P(x)$ be a polynomial with real coefficients. Prove that not all roots of $x^3P(x)+1$ are real.

2016 BMT Spring, 9

Tags: algebra , calculus
Suppose $p''(x) = 4x^2 + 4x + 2$ where $$p(x) = a_0 + a_1(x - 1) + a_2(x -2)^2 + a_3(x- 3)^4 + a_4(x-4)^4.$$ We have $p'(-3) = -24$ and $p(x)$ has the unique property that the sum of the third powers of the roots of $p(x)$ is equal to the sum of the fourth powers of the roots of $p(x)$ . Find $a_0$.

2023 Ukraine National Mathematical Olympiad, 8.2

In one country, a one-round tennis tournament was held (everyone played with everyone exactly once). Participants received $1$ point for winning a match, and $0$ points for losing. There are no draws in tennis. At the end of the tournament, Oleksiy saw the number of points scored by each participant, as well as the schedule of all the matches in the tournament, which showed the pairs of players, but not the winners. He chooses matches one by one in any order he wants and tries to guess the winner, after which he is told if he is correct. Prove that Oleksiy can act in such a way that he is guaranteed to guess the winners of more than half of the matches. [i]Proposed by Oleksiy Masalitin[/i]

2017 NIMO Problems, 4

Tags:
Isabella has a sheet of paper in the shape of a right triangle with sides of length 3, 4, and 5. She cuts the paper into two pieces along the altitude to the hypotenuse, and randomly picks one of the two pieces to discard. She then repeats the process with the other piece (since it is also in the shape of a right triangle), cutting it along the altitude to its hypotenuse and randomly discarding one of the two pieces once again, and continues doing this forever. As the number of iterations of this process approaches infinity, the total length of the cuts made in the paper approaches a real number $l$. Compute $[\mathbb{E}(l)]^2$, that is, the square of the expected value of $l$. [i]Proposed by Matthew Kroesche[/i]

2024 Durer Math Competition Finals, 2

One quadrant of the Cartesian coordinate system is tiled with $1\times 2$ dominoes. The dominoes don’t overlap with each other, they cover the entire quadrant and they all fit in the quadrant. Farringdon the flea is initially sitting at the origin and is allowed to jump from one corner of a domino to the opposite corner any number of times. Is it possible that the dominoes are arranged in such a way that Farringdon is unable to move to a distance greater than 2023 from the origin?

2015 Geolympiad Spring, 4

Tags:
Let $ABC$ be an acute triangle with $\angle A = 60$ and altitudes $BE, CF$. Suppose $BE, CF$ are reflected across the perpendicular bisector of $BC$ and the two new segments $B'E', C'F'$ intersect at a point $X$. If $A$ is reflected across $BC$ to form $A'$, show that $AX$ is bisected by the internal angle bisector of $A$.

2006 Federal Competition For Advanced Students, Part 1, 1

Let $ n$ be a non-negative integer, which ends written in decimal notation on exactly $ k$ zeros, but which is bigger than $ 10^k$. For a $ n$ is only $ k\equal{}k(n)\geq2$ known. In how many different ways (as a function of $ k\equal{}k(n)\geq2$) can $ n$ be written as difference of two squares of non-negative integers at least?

2013 Cuba MO, 1

Determine the smallest integer $n \ge 2012$ for which it is possible to have $16$ consecutive integers on a $4 \times 4$ board so that, if we select $4$ elements of which there are not two in the same row or in the same column, the sum of them is always equal to $n$. For the $n$ found, show how to fill the board.

1999 Finnish National High School Mathematics Competition, 5

An ordinary domino tile can be identifi ed as a pair $(k,m)$ where numbers $k$ and $m$ can get values $0, 1, 2, 3, 4, 5$ and $6.$ Pairs $(k,m)$ and $(m, k)$ determine the same tile. In particular, the pair $(k, k)$ determines one tile. We say that two domino tiles [i]match[/i], if they have a common component. [i]Generalized n-domino tiles[/i] $m$ and $k$ can get values $0, 1,... , n.$ What is the probability that two randomly chosen $n$-domino tiles match?

2023-24 IOQM India, 24

A trapezium in the plane is a quadrilateral in which a pair of opposite sides are parallel. A trapezium is said to be non-degenerate if it has positive area. Find the number of mutually non-congruent, non-degenerate trapeziums whose sides are four distinct integers from the set $\{5,6,7,8,9,10\}$