This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1970 Polish MO Finals, 1

Diameter $AB$ divides a circle into two semicircles. Points $P_1$ , $P_2$, $...$, $P_n$ are given on one of the semicircles in this order. How should a point C be chosen on the other semicircle in order to maximize the sum of the areas of triangles $CP_1P_2$, $CP_2P_3$, $...$,$CP_{n-1}P_n$?

2004 India IMO Training Camp, 2

Tags: function , algebra
Define a function $g: \mathbb{N} \mapsto \mathbb{N}$ by the following rule: (a) $g$ is nondecrasing (b) for each $n$, $g(n)$ i sthe number of times $n$ appears in the range of $g$, Prove that $g(1) = 1$ and $g(n+1) = 1 + g( n +1 - g(g(n)))$ for all $n \in \mathbb{N}$

Kvant 2024, M2782

In a country, some cities are connected by two-way airlines, and one can get from any city to any other city in no more than $n{}$ flights. Prove that all airlines can be distributed among $n{}$ companies so that a route can be built between any two cities in which no more than two flights of each company would meet. [i]From the folklore[/i]

2019 Kyiv Mathematical Festival, 3

Tags: inequalities
Let $a,b,c\ge0$ and $a+b+c\ge3.$ Prove that $a^4+b^3+c^2\ge a^3+b^2+c.$

2013 BMT Spring, 3

Two boxes contain some number of red, yellow, and blue balls. The first box has $3$ red, $4$ yellow, and $5$ blue balls, and the second box has $6$ red, $2$ yellow, and $7$ blue balls. There are two ways to select a ball from these boxes; one could first randomly choose a box and then randomly select a ball or one could put all the balls in the same box and simply randomly select a ball from there. How much greater is the probability of drawing a red ball using the second method than the first?

2022 IMO Shortlist, G7

Two triangles $ABC, A’B’C’$ have the same orthocenter $H$ and the same circumcircle with center $O$. Letting $PQR$ be the triangle formed by $AA’, BB’, CC’$, prove that the circumcenter of $PQR$ lies on $OH$.

1954 Miklós Schweitzer, 7

[b]7.[/b] Find the finite groups having only one proper maximal subgroup. [b](A.12)[/b]

2006 China Team Selection Test, 1

The centre of the circumcircle of quadrilateral $ABCD$ is $O$ and $O$ is not on any of the sides of $ABCD$. $P=AC \cap BD$. The circumecentres of $\triangle{OAB}$, $\triangle{OBC}$, $\triangle{OCD}$ and $\triangle{ODA}$ are $O_1$, $O_2$, $O_3$ and $O_4$ respectively. Prove that $O_1O_3$, $O_2O_4$ and $OP$ are concurrent.

2017 Silk Road, 2

Tags: geometry
The quadrilateral $ABCD$ is inscribed in the circle ω. The diagonals $AC$ and $BD$ intersect at the point $O$. On the segments $AO$ and $DO$, the points $E$ and $F$ are chosen, respectively. The straight line $EF$ intersects ω at the points $E_1$ and $F_1$. The circumscribed circles of the triangles $ADE$ and $BCF$ intersect the segment $EF$ at the points $E_2$ and $F_2$ respectively (assume that all the points $E, F, E_1, F_1, E_2$ and $F_2$ are different). Prove that $E_1E_2 = F_1F_2$. $(N. Sedrakyan)$

2018 Turkey Team Selection Test, 9

For a triangle $T$ and a line $d$, if the feet of perpendicular lines from a point in the plane to the edges of $T$ all lie on $d$, say $d$ focuses $T$. If the set of lines focusing $T_1$ and the set of lines focusing $T_2$ are the same, say $T_1$ and $T_2$ are equivalent. Prove that, for any triangle in the plane, there exists exactly one equilateral triangle which is equivalent to it.

2000 Harvard-MIT Mathematics Tournament, 46

Tags:
For what integer values of $n$ is $1+n+\frac{n^2}{2}+\cdots +\frac{n^n}{n!}$ an integer?

2017 Canada National Olympiad, 5

There are $100$ circles of radius one in the plane. A triangle formed by the centres of any three given circles has area at most $2017$. Prove that there is a line intersecting at least three of the circles.

2014 Purple Comet Problems, 14

Tags:
Let $a$, $b$, $c$ be positive integers such that $abc + bc + c = 2014$. Find the minimum possible value of $a + b + c$.

2019 AMC 12/AHSME, 11

Tags:
For some positive integer $k$, the repeating base-$k$ representation of the (base-ten) fraction $\frac{7}{51}$ is $0.\overline{23}_k = 0.232323..._k$. What is $k$? $\textbf{(A) } 13 \qquad\textbf{(B) } 14 \qquad\textbf{(C) } 15 \qquad\textbf{(D) } 16 \qquad\textbf{(E) } 17$

2017 All-Russian Olympiad, 3

There are 3 heaps with $100,101,102$ stones. Ilya and Kostya play next game. Every step they take one stone from some heap, but not from same, that was on previous step. They make his steps in turn, Ilya make first step. Player loses if can not make step. Who has winning strategy?

2002 China Team Selection Test, 1

Let $P_n(x)=a_0 + a_1x + \cdots + a_nx^n$, with $n \geq 2$, be a real-coefficient polynomial. Prove that if there exists $a > 0$ such that \begin{align*} P_n(x) = (x + a)^2 \left( \sum_{i=0}^{n-2} b_i x^i \right), \end{align*} where $b_i$ are positive real numbers, then there exists some $i$, with $1 \leq i \leq n-1$, such that \[a_i^2 - 4a_{i-1}a_{i+1} \leq 0.\]

2000 Tournament Of Towns, 6

a) Several black squares of side $1$ cm are nailed to a white plane with a nail of thickness $0 . 1$ cm so that they form a black polygon. Can it happen that the perimeter of this polygon is $1$ km long? (The nail is not allowed to touch the boundary of any of the squares . ) (b) The same problem as in (a) but with a nail of thickness $0$ (a point ) . (c) Several black squares of side $1$ cm lie on a white plane so that they form a black polygon (possibly having more than one piece and/ or having holes) . Can it happen that the ratio of its perimeter (in centimetres) to its area (in square centimetres) is more than $100000$? (Hungarian Folklore)

2011 Today's Calculation Of Integral, 697

Find the volume of the solid of the domain expressed by the inequality $x^2-x\leq y\leq x$, generated by a rotation about the line $y=x.$

2005 iTest, 27

Find the sum of all non-zero digits that can repeat at the end of a perfect square. (For example, if $811$ were a perfect square, $1$ would be one of these non-zero digits.)

2006 Paraguay Mathematical Olympiad, 4

Consider all pairs of positive integers $(a,b)$, with $a<b$, such that $\sqrt{a} +\sqrt{b} = \sqrt{2,160}$ Determine all possible values of $a$.

2013 Thailand Mathematical Olympiad, 2

Let $\vartriangle ABC$ be a triangle with $\angle ABC > \angle BCA \ge 30^o$ . The angle bisectors of $\angle ABC$ and $\angle BCA$ intersect $CA$ and $AB$ at $D$ and $E$ respectively, and $BD$ and $CE$ intersect at $P$. Suppose that $P D = P E$ and the incircle of $\vartriangle ABC$ has unit radius. What is the maximum possible length of $BC$?

2010 South East Mathematical Olympiad, 3

Tags: geometry
The incircle of triangle $ABC$ touches $BC$ at $D$ and $AB$ at $F$, intersects the line $AD$ again at $H$ and the line $CF$ again at $K$. Prove that $\frac{FD\times HK}{FH\times DK}=3$

2012 Brazil National Olympiad, 2

$ABC$ is a non-isosceles triangle. $T_A$ is the tangency point of incircle of $ABC$ in the side $BC$ (define $T_B$,$T_C$ analogously). $I_A$ is the ex-center relative to the side BC (define $I_B$,$I_C$ analogously). $X_A$ is the mid-point of $I_BI_C$ (define $X_B$,$X_C$ analogously). Show that $X_AT_A$,$X_BT_B$,$X_CT_C$ meet in a common point, colinear with the incenter and circumcenter of $ABC$.

2004 Tuymaada Olympiad, 1

Do there exist a sequence $a_{1}, a_{2}, a_{3}, \ldots$ of real numbers and a non-constant polynomial $P(x)$ such that $a_{m}+a_{n}=P(mn)$ for every positive integral $m$ and $n?$ [i]Proposed by A. Golovanov[/i]

1989 All Soviet Union Mathematical Olympiad, 498

A $23 \times 23$ square is tiled with $1 \times 1, 2 \times 2$ and $3 \times 3$ squares. What is the smallest possible number of $1 \times 1$ squares?