This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2017 AMC 8, 24

Tags:
Mrs. Sanders has three grandchildren, who call her regularly. One calls her every three days, one calls her every four days, and one calls her every five days. All three called her on December 31, 2016. On how many days during the next year did she not receive a phone call from any of her grandchildren? $\textbf{(A) }78\qquad\textbf{(B) }80\qquad\textbf{(C) }144\qquad\textbf{(D) }146\qquad\textbf{(E) }152$

2010 National Olympiad First Round, 29

Let $I$ be the incenter of $\triangle ABC$, and $O$ be the excenter corresponding to $B$. If $|BI|=12$, $|IO|=18$, and $|BC|=15$, then what is $|AB|$? $ \textbf{(A)}\ 16 \qquad\textbf{(B)}\ 18 \qquad\textbf{(C)}\ 20 \qquad\textbf{(D)}\ 22 \qquad\textbf{(E)}\ 24 $

1988 AMC 12/AHSME, 5

Tags:
If $b$ and $c$ are constants and \[(x + 2)(x + b) = x^2 + cx + 6,\] then $c$ is $ \textbf{(A)}\ -5\qquad\textbf{(B)}\ -3\qquad\textbf{(C)}\ -1\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 5 $

MathLinks Contest 2nd, 2.3

Tags: geometry
Prove that if two triangles are inscribed in the same circle, then their incircles are not strictly contained one into each other.

2023 Sinapore MO Open, P4

Find all functions $f: \mathbb{Z} \to \mathbb{Z}$, such that $$f(x+y)((f(x) - f(y))^2+f(xy))=f(x^3)+f(y^3)$$ for all integers $x, y$.

2021 CCA Math Bonanza, T3

Tags:
For any real number $x$, we let $\lfloor x \rfloor$ be the unique integer $n$ such that $n \leq x < n+1$. For example. $\lfloor 31.415 \rfloor = 31$. Compute \[2020^{2021} - \left\lfloor\frac{2020^{2021}}{2021} \right \rfloor (2021).\] [i]2021 CCA Math Bonanza Team Round #3[/i]

2020 Durer Math Competition Finals, 5

Let $H = \{-2019,-2018, ...,-1, 0, 1, 2, ..., 2020\}$. Describe all functions $f : H \to H$ for which a) $x = f(x) - f(f(x))$ holds for every $x \in H$. b) $x = f(x) + f(f(x)) - f(f(f(x)))$ holds for every $x \in H$. c) $x = f(x) + 2f(f(x)) - 3f(f(f(x)))$ holds for every $x \in H$. PS. (a) + (b) for category E 1.5, (b) + (c) for category E+ 1.2

2014 NIMO Summer Contest, 2

How many $2 \times 2 \times 2$ cubes must be added to a $8 \times 8 \times 8$ cube to form a $12 \times 12 \times 12$ cube? [i]Proposed by Evan Chen[/i]

2019 NMTC Junior, 1

Tags: geometry
In a convex quadrilateral $PQRS$, the areas of triangles $PQS$, $QRS$ and $PQR$ are in the ratio $3:4:1$. A line through $Q$ cuts $PR$ at $A$ and $RS$ at $B$ such that $PA:PR=RB:RS$. Prove that $A$ is the midpoint of $PR$ and $B$ is the midpoint of $RS$.

2011 Today's Calculation Of Integral, 699

Find the volume of the part bounded by $z=x+y,\ z=x^2+y^2$ in the $xyz$ space.

2017 Azerbaijan JBMO TST, 2

Tags: vieta , algebra
Let $x,y,z$ be 3 different real numbers not equal to $0$ that satisfiying $x^2-xy=y^2-yz=z^2-zx$. Find all the values of $\frac{x}{z}+\frac{y}{x}+\frac{z}{y}$ and $(x+y+z)^3+9xyz$.

1974 USAMO, 3

Two boundary points of a ball of radius 1 are joined by a curve contained in the ball and having length less than 2. Prove that the curve is contained entirely within some hemisphere of the given ball.

2022-23 IOQM India, 18

Let $m,n$ be natural numbers such that \\ $\hspace{2cm} m+3n-5=2LCM(m,n)-11GCD(m,n).$\\ Find the maximum possible value of $m+n$.

2024 IMAR Test, P3

Tags: geometry
Let $ABC$ be a triangle . A circle through $B$ and $C$ crosses sides $AB$ and $AC$ at $P$ and $Q$, respectively. Points $X$ and $Y$ on segments $BQ$ and $CP$, respectively, satisfy $\angle ABY=\angle AXP$ and $ACX=\angle AYQ$. Prove that $XY$ and $BC$ are parallel.

1978 Polish MO Finals, 6

Prove that if $h_1,h_2,h_3,h_4$ are the altitudes of a tetrahedron and $d_1,d_2,d_3$ the distances between the pairs of opposite edges of the tetrahedron, then $$\frac{1}{h_1^2} +\frac{1}{h_2^2} +\frac{1}{h_3^2} +\frac{1}{h_4^2} =\frac{1}{d_1^2} +\frac{1}{d_2^2} +\frac{1}{d_3^2}.$$

2014 Harvard-MIT Mathematics Tournament, 28

Let $f(n)$ and $g(n)$ be polynomials of degree $2014$ such that $f(n)+(-1)^ng(n)=2^n$ for $n=1,2,\ldots,4030$. Find the coefficient of $x^{2014}$ in $g(x)$.

2008 Mathcenter Contest, 5

There are $6$ irrational numbers. Prove that there are always three of them, suppose $a,b,c$ such that $a+b$,$b+c$,$c+a$ are irrational numbers. [i](Erken)[/i]

2018 Danube Mathematical Competition, 1

Suppose we have a necklace of $n$ beads. Each bead is labeled with an integer and the sum of all these labels is $n - 1$. Prove that we can cut the necklace to form a string, whose consecutive labels $x_1,x_2,...,x_n$ satisfy $\sum_{i=1}^{k} x_i \le k - 1$ for any $k = 1,...,n$

2007 Korea Junior Math Olympiad, 3

Consider the string of length $6$ composed of three characters $a, b, c$. For each string, if two $a$s are next to each other, or two $b$s are next to each other, then replace $aa$ by $b$, and replace $bb$ by $a$. Also, if $a$ and $b$ are next to each other, or two $c$s are next to each other, remove all two of them (i.e. delete $ab, ba, cc$). Determine the number of strings that can be reduced to $c$, the string of length $1$, by the reducing processes mentioned above.

2003 AIME Problems, 7

Find the area of rhombus $ABCD$ given that the radii of the circles circumscribed around triangles $ABD$ and $ACD$ are $12.5$ and $25$, respectively.

1986 AMC 8, 20

Tags:
The value of the expression $ \frac{(304)^5}{(29.7)(399)^4}$ is closest to \[ \textbf{(A)}\ .003 \qquad \textbf{(B)}\ .03 \qquad \textbf{(C)}\ .3 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 30 \]

2023 Turkey Olympic Revenge, 5

There are $10$ cups, each having $10$ pebbles in them. Two players $A$ and $B$ play a game, repeating the following in order each move: $\bullet$ $B$ takes one pebble from each cup and redistributes them as $A$ wishes. $\bullet$ After $B$ distributes the pebbles, he tells how many pebbles are in each cup to $A$. Then $B$ destroys all the cups having no pebbles. $\bullet$ $B$ switches the places of two cups without telling $A$. After finitely many moves, $A$ can guarantee that $n$ cups are destroyed. Find the maximum possible value of $n$. (Note that $A$ doesn't see the cups while playing.) [i]Proposed by Emre Osman[/i]

1981 AMC 12/AHSME, 5

In trapezoid $ABCD$, sides $AB$ and $CD$ are parallel, and diagonal $BD$ and side $AD$ have equal length. If $m\angle DBC=110^\circ$ and $m\angle CBD =30^\circ$, then $m \angle ADB=$ $\text{(A)}\ 80^\circ \qquad \text{(B)}\ 90^\circ \qquad \text{(C)}\ 100^\circ \qquad \text{(D)}\ 110^\circ \qquad \text{(E)}\ 120^\circ$

1988 AMC 12/AHSME, 23

The six edges of a tetrahedron $ABCD$ measure $7$, $13$, $18$, $27$, $36$ and $41$ units. If the length of edge $AB$ is $41$, then the length of edge $CD$ is $ \textbf{(A)}\ 7\qquad\textbf{(B)}\ 13\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 27\qquad\textbf{(E)}\ 36 $

2005 Taiwan TST Round 3, 2

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.