This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1975 AMC 12/AHSME, 26

In acute triangle $ABC$ the bisector of $\measuredangle A$ meets side $BC$ at $D$. The circle with center $B$ and radius $BD$ intersects side $AB$ at $M$; and the circle with center $C$ and radius $CD$ intersects side $AC$ at $N$. Then it is always true that $ \textbf{(A)}\ \measuredangle CND+\measuredangle BMD-\measuredangle DAC =120^{\circ} \qquad\textbf{(B)}\ AMDN\ \text{is a trapezoid} \qquad\textbf{(C)}\ BC\ \text{is parallel to}\ MN \\ \qquad\textbf{(D)}\ AM-AN=\frac{3(DB-DC)}{2} \qquad\textbf{(E)}\ AB-AC=\frac{3(DB-DC)}{2}$

2010 Saudi Arabia BMO TST, 3

Let $(a_n )_{n \ge o}$ and $(b_n )_{n \ge o}$ be sequences defined by $a_{n+2} = a_{n+1}+ a_n$ , $n = 0 , 1 , . .. $, $a_0 = 1$, $a_1 = 2$, and $b_{n+2} = b_{n+1} + b_n$ , $n = 0 , 1 , . . .$, $b_0 = 2$, $b_1 = 1$. How many integers do the sequences have in common?

2011 Romania Team Selection Test, 4

Let $ABCDEF$ be a convex hexagon of area $1$, whose opposite sides are parallel. The lines $AB$, $CD$ and $EF$ meet in pairs to determine the vertices of a triangle. Similarly, the lines $BC$, $DE$ and $FA$ meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least $3/2$.

2018 India IMO Training Camp, 2

A $10$ digit number is called interesting if its digits are distinct and is divisible by $11111$. Then find the number of interesting numbers.

2010 AMC 12/AHSME, 10

The first four terms of an arithmetic sequence are $ p,9,3p\minus{}q,$ and $ 3p\plus{}q$. What is the $ 2010^{\text{th}}$ term of the sequence? $ \textbf{(A)}\ 8041\qquad \textbf{(B)}\ 8043\qquad \textbf{(C)}\ 8045\qquad \textbf{(D)}\ 8047\qquad \textbf{(E)}\ 8049$

2014-2015 SDML (High School), 12

Which of the following polynomials with integer coefficients has $\sin\left(10^{\circ}\right)$ as a root? $\text{(A) }4x^3-4x+1\qquad\text{(B) }6x^3-8x^2+1\qquad\text{(C) }4x^3+4x-1\qquad\text{(D) }8x^3+6x-1\qquad\text{(E) }8x^3-6x+1$

2020 IMO Shortlist, A2

Let $\mathcal{A}$ denote the set of all polynomials in three variables $x, y, z$ with integer coefficients. Let $\mathcal{B}$ denote the subset of $\mathcal{A}$ formed by all polynomials which can be expressed as \begin{align*} (x + y + z)P(x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z) \end{align*} with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer $n$ such that $x^i y^j z^k \in \mathcal{B}$ for all non-negative integers $i, j, k$ satisfying $i + j + k \geq n$.

2007 Hanoi Open Mathematics Competitions, 14

Tags: algebra
How many ordered pairs of integers (x; y) satisfy the equation $x^2 + y^2 + xy = 4(x + y)?$.

2025 NEPALTST, 2

Kritesh manages traffic on a $45 \times 45$ grid consisting of 2025 unit squares. Within each unit square is a car, facing either up, down, left, or right. If the square in front of a car in the direction it is facing is empty, it can choose to move forward. Each car wishes to exit the $45 \times 45$ grid. Kritesh realizes that it may not always be possible for all the cars to leave the grid. Therefore, before the process begins, he will remove $k$ cars from the $45 \times 45$ grid in such a way that it becomes possible for all the remaining cars to eventually exit the grid. What is the minimum value of $k$ that guarantees that Kritesh's job is possible? $\textbf{Proposed by Shining Sun. USA}$

2013 Purple Comet Problems, 18

Tags: trigonometry
Two concentric circles have radii $1$ and $4$. Six congruent circles form a ring where each of the six circles is tangent to the two circles adjacent to it as shown. The three lightly shaded circles are internally tangent to the circle with radius $4$ while the three darkly shaded circles are externally tangent to the circle with radius $1$. The radius of the six congruent circles can be written $\textstyle\frac{k+\sqrt m}n$, where $k,m,$ and $n$ are integers with $k$ and $n$ relatively prime. Find $k+m+n$. [asy] size(150); defaultpen(linewidth(0.8)); real r = (sqrt(133)-9)/2; draw(circle(origin,1)^^circle(origin,4)); for(int i=0;i<=2;i=i+1) { filldraw(circle(dir(90 + i*120)*(4-r),r),gray); } for(int j=0;j<=2;j=j+1) { filldraw(circle(dir(30+j*120)*(1+r),r),darkgray); } [/asy]

2005 Moldova National Olympiad, 11.2

Let $a$ and $b$ be two real numbers. Find these numbers given that the graphs of $f:\mathbb{R} \to \mathbb{R} , f(x)=2x^4-a^2x^2+b-1$ and $g:\mathbb{R} \to \mathbb{R} ,g(x)=2ax^3-1$ have exactly two points of intersection.

1985 IMO Longlists, 77

Two equilateral triangles are inscribed in a circle with radius $r$. Let $A$ be the area of the set consisting of all points interior to both triangles. Prove that $2A \geq r^2 \sqrt 3.$

2004 Croatia National Olympiad, Problem 1

Tags: geometry
Let $ABCD$ be a square and $P$ be a point on the shorter arc $AB$ of the circumcircle of the square. Which values can the expression $\frac{AP+BP}{CP+DP}$ take?

2014 Contests, 3

Tags:
For how many integers $n$, there are four distinct real numbers satisfying the equation $ |x^2-4x-7|=n$? $ \textbf{(A)}\ 12 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ 7 \qquad\textbf{(E)}\ 5 $

2023 India National Olympiad, 4

Tags:
Let $k \geq 1$ and $N>1$ be two integers. On a circle are placed $2N+1$ coins all showing heads. Calvin and Hobbes play the following game. Calvin starts and on his move can turn any coin from heads to tails. Hobbes on his move can turn at most one coin that is next to the coin that Calvin turned just now from tails to heads. Calvin wins if at any moment there are $k$ coins showing tails after Hobbes has made his move. Determine all values of $k$ for which Calvin wins the game. [i]Proposed by Tejaswi Navilarekallu[/i]

2006 Stanford Mathematics Tournament, 9

Tags:
If to the numerator and denominator of the fraction $ \frac{1}{3}$ you add its denominator 3, the fraction will double. Find a fraction which will triple when its denominator is added to its numerator and to its denominator and find one that will quadruple.

1998 Brazil National Olympiad, 2

Find all functions $f : \mathbb N \to \mathbb N$ satisfying, for all $x \in \mathbb N$, \[ f(2f(x)) = x + 1998 . \]

1971 IMO Longlists, 11

Find all positive integers $n$ for which the number $1!+2!+3!+\cdots+n!$ is a perfect power of an integer.

2014 Contests, 2

Let $(X,d)$ be a nonempty connected metric space such that the limit of every convergent sequence, is a term of that sequence. Prove that $X$ has exactly one element.

2013 ISI Entrance Examination, 1

Tags: logarithm
Let $a,b,c$ be real number greater than $1$. Let \[S=\log_a {bc}+\log_b {ca}+\log_c {ab}\] Find the minimum possible value of $S$.

2002 Indonesia MO, 7

Tags: rhombus , geometry
Let $ABCD$ be a rhombus where $\angle DAB = 60^\circ$, and $P$ be the intersection between $AC$ and $BD$. Let $Q,R,S$ be three points on the boundary of $ABCD$ such that $PQRS$ is a rhombus. Prove that exactly one of $Q,R,S$ lies on one of $A,B,C,D$.

2017 Bosnia and Herzegovina Junior BMO TST, 4

In each cell of $5 \times 5$ table there is one number from $1$ to $5$ such that every number occurs exactly once in every row and in every column. Number in one column is [i]good positioned[/i] if following holds: - In every row, every number which is left from [i]good positoned[/i] number is smaller than him, and every number which is right to him is greater than him, or vice versa. - In every column, every number which is above from [i]good positoned[/i] number is smaller than him, and every number which is below to him is greater than him, or vice versa. What is maximal number of good positioned numbers that can occur in this table?

2016 Mathematical Talent Reward Programme, MCQ: P 14

Let $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$. Find $x$ such that $x\lfloor x\lfloor x\lfloor x\rfloor\rfloor \rfloor = 88$ [list=1] [*] $\pi$ [*] 3.14 [*] $\frac{22}{7}$ [*] All of these [/list]

2015 Purple Comet Problems, 2

Tags:
The diagram below is made up of a rectangle AGHB, an equilateral triangle AFG, a rectangle ADEF, and a parallelogram ABCD. Find the degree measure of ∠ABC. For diagram go to http://www.purplecomet.org/welcome/practice, the 2015 middle school contest, and go to #2

2013 Moldova Team Selection Test, 1

Tags: inequalities
For any positive real numbers $x,y,z$, prove that $\frac{x}{y}+\frac{y}{z}+\frac{z}{x} \geq \frac{z(x+y)}{y(y+z)} + \frac{x(z+y)}{z(x+z)} + \frac{y(x+z)}{x(x+y)}$