This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 33

2007 Sharygin Geometry Olympiad, 5

Each edge of a convex polyhedron is shifted such that the obtained edges form the frame of another convex polyhedron. Are these two polyhedra necessarily congruent?

2000 Austrian-Polish Competition, 2

In a unit cube, $CG$ is the edge perpendicular to the face $ABCD$. Let $O_1$ be the incircle of square $ABCD$ and $O_2$ be the circumcircle of triangle $BDG$. Determine min$\{XY|X\in O_1,Y\in O_2\}$.

1979 Vietnam National Olympiad, 6

$ABCD$ is a rectangle with $BC / AB = \sqrt2$. $ABEF$ is a congruent rectangle in a different plane. Find the angle $DAF$ such that the lines $CA$ and $BF$ are perpendicular. In this configuration, find two points on the line $CA$ and two points on the line $BF$ so that the four points form a regular tetrahedron.

1988 Mexico National Olympiad, 8

Compute the volume of a regular octahedron circumscribed about a sphere of radius $1$.

1991 Mexico National Olympiad, 3

Four balls of radius $1$ are placed in space so that each of them touches the other three. What is the radius of the smallest sphere containing all of them?

2014 Sharygin Geometry Olympiad, 24

A circumscribed pyramid $ABCDS$ is given. The opposite sidelines of its base meet at points $P$ and $Q$ in such a way that $A$ and $B$ lie on segments $PD$ and $PC$ respectively. The inscribed sphere touches faces $ABS$ and $BCS$ at points $K$ and $L$. Prove that if $PK$ and $QL$ are complanar then the touching point of the sphere with the base lies on $BD$.

2017 Yasinsky Geometry Olympiad, 2

In the tetrahedron $DABC, AB=BC, \angle DBC =\angle DBA$. Prove that $AC \perp DB$.

2015 Sharygin Geometry Olympiad, P24

The insphere of a tetrahedron ABCD with center $O$ touches its faces at points $A_1,B_1,C_1$ and $D_1$. a) Let $P_a$ be a point such that its reflections in lines $OB,OC$ and $OD$ lie on plane $BCD$. Points $P_b, P_c$ and $P_d$ are defined similarly. Prove that lines $A_1P_a,B_1P_b,C_1P_c$ and $D_1P_d$ concur at some point $ P$. b) Let $I$ be the incenter of $A_1B_1C_1D_1$ and $A_2$ the common point of line $A_1I $ with plane $B_1C_1D_1$. Points $B_2, C_2, D_2$ are defined similarly. Prove that $P$ lies inside $A_2B_2C_2D_2$.