This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

MMPC Part II 1958 - 95, 1958

[b]p1.[/b] Show that $9x + 5y$ is a multiple of$ 17$ whenever $2x + 3y$ is a multiple of $17$. [b]p2.[/b] Express the five distinct fifth roots of $1$ in terms of radicals. [b]p3.[/b] Prove that the three perpendiculars dropped to the three sides of an equilateral triangle from any point inside the triangle have a constant sum. [b]p4.[/b] Find the volume of a sphere which circumscribes a regular tetrahedron of edge $a$. [b]p5.[/b] For any integer $n$ greater than $1$, show that $n^2-2n + 1$ is a factor at $n^{n-1}-1$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1988 All Soviet Union Mathematical Olympiad, 481

A polygonal line connects two opposite vertices of a cube with side $2$. Each segment of the line has length $3$ and each vertex lies on the faces (or edges) of the cube. What is the smallest number of segments the line can have?

1981 Romania Team Selection Tests, 3.

Consider three fixed spheres $S_1, S_2, S_3$ with pairwise disjoint interiors. Determine the locus of the centre of the sphere intersecting each $S_i$ along a great circle of $S_i$. [i]Stere Ianuș[/i]

2014 NIMO Summer Contest, 3

A square and equilateral triangle have the same perimeter. If the triangle has area $16\sqrt3$, what is the area of the square? [i]Proposed by Evan Chen[/i]

1990 French Mathematical Olympiad, Problem 2

A game consists of pieces of the shape of a regular tetrahedron of side $1$. Each face of each piece is painted in one of $n$ colors, and by this, the faces of one piece are not necessarily painted in different colors. Determine the maximum possible number of pieces, no two of which are identical.

2001 Pan African, 2

Let $n$ be a positive integer. A child builds a wall along a line with $n$ identical cubes. He lays the first cube on the line and at each subsequent step, he lays the next cube either on the ground or on the top of another cube, so that it has a common face with the previous one. How many such distinct walls exist?

1998 Putnam, 1

A right circular cone has base of radius 1 and height 3. A cube is inscribed in the cone so that one face of the cube is contained in the base of the cone. What is the side-length of the cube?

2005 Sharygin Geometry Olympiad, 21

The planet Tetraincognito covered by ocean has the shape of a regular tetrahedron with an edge of $900$ km. What area of the ocean will the tsunami' cover $2$ hours after the earthquake with the epicenter in a) the center of the face, b) the middle of the edge, if the tsunami propagation speed is $300$ km / h?

1965 Vietnam National Olympiad, 2

$AB$ and $CD$ are two fixed parallel chords of the circle $S$. $M$ is a variable point on the circle. $Q$ is the intersection of the lines $MD$ and $AB$. $X$ is the circumcenter of the triangle $MCQ$. Find the locus of $X$. What happens to $X$ as $M$ tends to (1) $D$, (2) $C$? Find a point $E$ outside the plane of $S$ such that the circumcenter of the tetrahedron $MCQE$ has the same locus as $X$.

2009 AMC 12/AHSME, 20

A convex polyhedron $ Q$ has vertices $ V_1,V_2,\ldots,V_n$, and $ 100$ edges. The polyhedron is cut by planes $ P_1,P_2,\ldots,P_n$ in such a way that plane $ P_k$ cuts only those edges that meet at vertex $ V_k$. In addition, no two planes intersect inside or on $ Q$. The cuts produce $ n$ pyramids and a new polyhedron $ R$. How many edges does $ R$ have? $ \textbf{(A)}\ 200\qquad \textbf{(B)}\ 2n\qquad \textbf{(C)}\ 300\qquad \textbf{(D)}\ 400\qquad \textbf{(E)}\ 4n$

1987 IMO Longlists, 18

Let $ABCDEFGH$ be a parallelepiped with $AE \parallel BF \parallel CG \parallel DH$. Prove the inequality \[AF + AH + AC \leq AB + AD + AE + AG.\] In what cases does equality hold? [i]Proposed by France.[/i]

III Soros Olympiad 1996 - 97 (Russia), 10.2

Let $ABCD$ be a regular triangular pyramid with base $ABC$ (this means that $ABC$ is a regular triangle, and edges $AD$, $BD$ and $CD$ are equal) and plane angles at the opposite vertex equal to $a$. A plane parallel to $ABC$ intersects $AD$, $BD$ and $CD$, respectively, at points $A_1$, $B_1$ and $C_1$. The surface of the polyhedron $ABCA_1B_1C_1$ is cut along five edges: $A_1B_1$, $B_1C_1$, $C_1C$, $CA$ and $AB$, after which this surface is turned onto a plane. At what values of $a$ will the resulting scan necessarily cover itself?

2010 Moldova Team Selection Test, 4

Let $ n\geq6$ be a even natural number. Prove that any cube can be divided in $ \dfrac{3n(n\minus{}2)}4\plus{}2$ cubes.

1986 Traian Lălescu, 1.4

Let be two fixed points $ B,C. $ Find the locus of the spatial points $ A $ such that $ ABC $ is a nondegenerate triangle and the expression $$ R^2 (A)\cdot\sin \left( 2\angle ABC\right)\cdot\sin \left( 2\angle BCA\right) $$ has the greatest value possible, where $ R(A) $ denotes the radius of the excirlce of $ ABC. $

1993 AMC 12/AHSME, 29

Which of the following sets could NOT be the lengths of the external diagonals of a right rectangular prism [a "box"]? (An [i]external diagonal[/i] is a diagonal of one of the rectangular faces of the box.) $ \textbf{(A)}\ \{4, 5, 6\} \qquad\textbf{(B)}\ \{4, 5, 7\} \qquad\textbf{(C)}\ \{4, 6, 7\} \qquad\textbf{(D)}\ \{5, 6, 7\} \qquad\textbf{(E)}\ \{5, 7, 8\} $

2008 AMC 12/AHSME, 11

A cone-shaped mountain has its base on the ocean floor and has a height of $ 8000$ feet. The top $ \frac{1}{8}$ of the volume of the mountain is above water. What is the depth of the ocean at the base of the mountain, in feet? $ \textbf{(A)}\ 4000 \qquad \textbf{(B)}\ 2000(4\minus{}\sqrt{2}) \qquad \textbf{(C)}\ 6000 \qquad \textbf{(D)}\ 6400 \qquad \textbf{(E)}\ 7000$

2005 Federal Competition For Advanced Students, Part 2, 3

Let $Q$ be a point inside a cube. Prove that there are infinitely many lines $l$ so that $AQ=BQ$ where $A$ and $B$ are the two points of intersection of $l$ and the surface of the cube.

2009 AMC 8, 22

How many whole numbers between 1 and 1000 do [b]not[/b] contain the digit 1? $ \textbf{(A)}\ 512 \qquad \textbf{(B)}\ 648 \qquad \textbf{(C)}\ 720 \qquad \textbf{(D)}\ 728 \qquad \textbf{(E)}\ 800$

1973 IMO Longlists, 7

Given a tetrahedron $ABCD$. Let $x = AB \cdot CD, y = AC \cdot BD$ and $z = AD\cdot BC$. Prove that there exists a triangle with the side lengths $x, y$ and $z$.

2017 Oral Moscow Geometry Olympiad, 2

Given pyramid with base $n-gon$. How many maximum number of edges can be perpendicular to base?

1966 AMC 12/AHSME, 19

Let $s_1$ be the sum of the first $n$ terms of the arithmetic sequence $8,12,\cdots$ and let $s_2$ be the sum of the first $n$ terms of the arithmetic sequence $17,19\cdots$. Assume $n\ne 0$. Then $s_1=s_2$ for: $\text{(A)} \ \text{no value of n} \qquad \text{(B)} \ \text{one value of n} \qquad \text{(C)} \ \text{two values of n}$ $\text{(D)} \ \text{four values of n} \qquad \text{(E)} \ \text{more than four values of n}$

1997 Polish MO Finals, 3

In a tetrahedron $ABCD$, the medians of the faces $ABD$, $ACD$, $BCD$ from $D$ make equal angles with the corresponding edges $AB$, $AC$, $BC$. Prove that each of these faces has area less than or equal to the sum of the areas of the other two faces. [hide="Comment"][i]Equivalent version of the problem:[/i] $ABCD$ is a tetrahedron. $DE$, $DF$, $DG$ are medians of triangles $DBC$, $DCA$, $DAB$. The angles between $DE$ and $BC$, between $DF$ and $CA$, and between $DG$ and $AB$ are equal. Show that: area $DBC$ $\leq$ area $DCA$ + area $DAB$. [/hide]

MIPT Undergraduate Contest 2019, 1.4

Suppose that in a unit sphere in Euclidean space, there are $2m$ points $x_1, x_2, ..., x_{2m}.$ Prove that it's possible to partition them into two sets of $m$ points in such a way that the centers of mass of these sets are at a distance of at most $\frac{2}{\sqrt{m}}$ from one another.

1972 Polish MO Finals, 4

Points $A$ and $B$ are given on a line having no common points with a sphere $K$. The feet $P$ of the perpendicular from the center of $K$ to the line $AB$ is positioned between $A$ and $B$, and the lengths of segments $AP$ and $BP$ both exceed the radius of $K$. Consider the set $Z$ of all triangles $ABC$ whose sides $AC$ and $BC$ are tangent to $K$. Prove that among all triangles in $Z$, a triangle $T$ with a maximum perimeter also has a maximum area.

1973 IMO Shortlist, 9

Let $Ox, Oy, Oz$ be three rays, and $G$ a point inside the trihedron $Oxyz$. Consider all planes passing through $G$ and cutting $Ox, Oy, Oz$ at points $A,B,C$, respectively. How is the plane to be placed in order to yield a tetrahedron $OABC$ with minimal perimeter ?