This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

2012 Pan African, 1

The numbers $\frac{1}{1}, \frac{1}{2}, \cdots , \frac{1}{2012}$ are written on the blackboard. Aïcha chooses any two numbers from the blackboard, say $x$ and $y$, erases them and she writes instead the number $x + y + xy$. She continues to do this until only one number is left on the board. What are the possible values of the final number?

2004 Croatia National Olympiad, Problem 3

The altitudes of a tetrahedron meet at a single point. Prove that this point, the centroid of one face of the tetrahedron, the foot of the altitude on that face, and the three points dividing the other three altitudes in ratio $2:1$ (closer to the feet) all lie on a sphere.

2012 AMC 12/AHSME, 22

Distinct planes $p_1,p_2,....,p_k$ intersect the interior of a cube $Q$. Let $S$ be the union of the faces of $Q$ and let $ P =\bigcup_{j=1}^{k}p_{j} $. The intersection of $P$ and $S$ consists of the union of all segments joining the midpoints of every pair of edges belonging to the same face of $Q$. What is the difference between the maximum and minimum possible values of $k$? $ \textbf{(A)}\ 8\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 23\qquad\textbf{(E)}\ 24 $

2009 AMC 12/AHSME, 5

One dimension of a cube is increased by $ 1$, another is decreased by $ 1$, and the third is left unchanged. The volume of the new rectangular solid is $ 5$ less than that of the cube. What was the volume of the cube? $ \textbf{(A)}\ 8 \qquad \textbf{(B)}\ 27 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ 125 \qquad \textbf{(E)}\ 216$

1987 AMC 8, 7

The large cube shown is made up of $27$ identical sized smaller cubes. For each face of the large cube, the opposite face is shaded the same way. The total number of smaller cubes that must have at least one face shaded is [asy] unitsize(36); draw((0,0)--(3,0)--(3,3)--(0,3)--cycle); draw((3,0)--(5.2,1.4)--(5.2,4.4)--(3,3)); draw((0,3)--(2.2,4.4)--(5.2,4.4)); fill((0,0)--(0,1)--(1,1)--(1,0)--cycle,black); fill((0,2)--(0,3)--(1,3)--(1,2)--cycle,black); fill((1,1)--(1,2)--(2,2)--(2,1)--cycle,black); fill((2,0)--(3,0)--(3,1)--(2,1)--cycle,black); fill((2,2)--(3,2)--(3,3)--(2,3)--cycle,black); draw((1,3)--(3.2,4.4)); draw((2,3)--(4.2,4.4)); draw((.733333333,3.4666666666)--(3.73333333333,3.466666666666)); draw((1.466666666,3.9333333333)--(4.466666666,3.9333333333)); fill((1.73333333,3.46666666666)--(2.7333333333,3.46666666666)--(3.46666666666,3.93333333333)--(2.46666666666,3.93333333333)--cycle,black); fill((3,1)--(3.733333333333,1.466666666666)--(3.73333333333,2.46666666666)--(3,2)--cycle,black); fill((3.73333333333,.466666666666)--(4.466666666666,.93333333333)--(4.46666666666,1.93333333333)--(3.733333333333,1.46666666666)--cycle,black); fill((3.73333333333,2.466666666666)--(4.466666666666,2.93333333333)--(4.46666666666,3.93333333333)--(3.733333333333,3.46666666666)--cycle,black); fill((4.466666666666,1.9333333333333)--(5.2,2.4)--(5.2,3.4)--(4.4666666666666,2.9333333333333)--cycle,black); [/asy] $\text{(A)}\ 10 \qquad \text{(B)}\ 16 \qquad \text{(C)}\ 20 \qquad \text{(D)}\ 22 \qquad \text{(E)}\ 24$

2018 Adygea Teachers' Geometry Olympiad, 4

Given a cube $ABCDA_1B_1C_1D_1$ with edge $5$. On the edge $BB_1$ of the cube , point $K$ such thath $BK=4$. a) Construct a cube section with the plane $a$ passing through the points $K$ and $C_1$ parallel to the diagonal $BD_1$. b) Find the angle between the plane $a$ and the plane $BB_1C_1$.

1979 Polish MO Finals, 2

Prove that the four lines, joining the vertices of a tetrahedron with the incenters of the opposite faces, have a common point if and only if the three products of the lengths of opposite sides are equal.

2002 Moldova National Olympiad, 4

The circumradius of a tetrahedron $ ABCD$ is $ R$, and the lenghts of the segments connecting the vertices $ A,B,C,D$ with the centroids of the opposite faces are equal to $ m_a,m_b,m_c$ and $ m_d$, respectively. Prove that: $ m_a\plus{}m_b\plus{}m_c\plus{}m_d\leq \dfrac{16}{3}R$

1966 IMO Shortlist, 57

Is it possible to choose a set of $100$ (or $200$) points on the boundary of a cube such that this set is fixed under each isometry of the cube into itself? Justify your answer.

1975 Putnam, B2

A [i]slab[/i] is the set of points strictly between two parallel planes. Prove that a countable sequence of slabs, the sum of whose thicknesses converges, cannot fill space.

MMPC Part II 1958 - 95, 1964

[b]p1.[/b] The edges of a tetrahedron are all tangent to a sphere. Prove that the sum of the lengths of any pair of opposite edges equals the sum of the lengths of any other pair of opposite edges. (Two edges of a tetrahedron are said to be opposite if they do not have a vertex in common.) [b]p2.[/b] Find the simplest formula possible for the product of the following $2n - 2$ factors: $$\left(1+\frac12 \right),\left(1-\frac12 \right), \left(1+\frac13 \right) , \left(1-\frac13 \right),...,\left(1+\frac{1}{n} \right), \left(1-\frac{1}{n} \right)$$. Prove that your formula is correct. [b]p3.[/b] Solve $$\frac{(x + 1)^2+1}{x + 1} + \frac{(x + 4)^2+4}{x + 4}=\frac{(x + 2)^2+2}{x + 2}+\frac{(x + 3)^2+3}{x + 3}$$ [b]p4.[/b] Triangle $ABC$ is inscribed in a circle, $BD$ is tangent to this circle and $CD$ is perpendicular to $BD$. $BH$ is the altitude from $B$ to $AC$. Prove that the line $DH$ is parallel to $AB$. [img]https://cdn.artofproblemsolving.com/attachments/e/9/4d0b136dca4a9b68104f00300951837adef84c.png[/img] [b]p5.[/b] Consider the picture below as a section of a city street map. There are several paths from $A$ to $B$, and if one always walks along the street, the shortest paths are $15$ blocks in length. Find the number of paths of this length between $A$ and $B$. [img]https://cdn.artofproblemsolving.com/attachments/8/d/60c426ea71db98775399cfa5ea80e94d2ea9d2.png[/img] [b]p6.[/b] A [u]finite [/u] [u]graph [/u] is a set of points, called [u]vertices[/u], together with a set of arcs, called [u]edges[/u]. Each edge connects two of the vertices (it is not necessary that every pair of vertices be connected by an edge). The [u]order [/u] of a vertex in a finite graph is the number of edges attached to that vertex. [u]Example[/u] The figure at the right is a finite graph with $4$ vertices and $7$ edges. [img]https://cdn.artofproblemsolving.com/attachments/5/9/84d479c5dbd0a6f61a66970e46ab15830d8fba.png[/img] One vertex has order $5$ and the other vertices order $3$. Define a finite graph to be [u]heterogeneous [/u] if no two vertices have the same order. Prove that no graph with two or more vertices is heterogeneous. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2007 National Olympiad First Round, 10

How many positive integers $n<10^6$ are there such that $n$ is equal to twice of square of an integer and is equal to three times of cube of an integer? $ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \text{None of the above} $

1996 Czech And Slovak Olympiad IIIA, 2

Let $AP,BQ$ and $CR$ be altitudes of an acute-angled triangle $ABC$. Show that for any point $X$ inside the triangle $PQR$ there exists a tetrahedron $ABCD$ such that $X$ is the point on the face $ABC$ at the greatest distance from $D$ (measured along the surface of the tetrahedron).

2008 ITest, 88

A six dimensional "cube" (a $6$-cube) has $64$ vertices at the points $(\pm 3,\pm 3,\pm 3,\pm 3,\pm 3,\pm 3).$ This $6$-cube has $192\text{ 1-D}$ edges and $240\text{ 2-D}$ edges. This $6$-cube gets cut into $6^6=46656$ smaller congruent "unit" $6$-cubes that are kept together in the tightly packaged form of the original $6$-cube so that the $46656$ smaller $6$-cubes share 2-D square faces with neighbors ($\textit{one}$ 2-D square face shared by $\textit{several}$ unit $6$-cube neighbors). How many 2-D squares are faces of one or more of the unit $6$-cubes?

1981 IMO Shortlist, 18

Several equal spherical planets are given in outer space. On the surface of each planet there is a set of points that is invisible from any of the remaining planets. Prove that the sum of the areas of all these sets is equal to the area of the surface of one planet.

1979 Miklós Schweitzer, 4

For what values of $ n$ does the group $ \textsl{SO}(n)$ of all orthogonal transformations of determinant $ 1$ of the $ n$-dimensional Euclidean space possess a closed regular subgroup?($ \textsl{G}<\textsl{SO}(n)$ is called $ \textit{regular}$ if for any elements $ x,y$ of the unit sphere there exists a unique $ \varphi \in \textsl{G}$ such that $ \varphi(x)\equal{}y$.) [i]Z. Szabo[/i]

1968 All Soviet Union Mathematical Olympiad, 104

Three spheres are constructed so that the edges $[AB], [BC], [AD]$ of the tetrahedron $ABCD$ are their respective diameters. Prove that the spheres cover all the tetrahedron.

1947 Moscow Mathematical Olympiad, 138

In space, $n$ wire triangles are situated so that any two of them have a common vertex and each vertex is the vertex of $k$ triangles. Find all $n$ and $k$ for which this is possible.

1972 AMC 12/AHSME, 12

The number of cubic feet in the volume of a cube is the same as the number of square inches in its surface area. The length of the edge expressed as a number of feet is $\textbf{(A) }6\qquad\textbf{(B) }864\qquad\textbf{(C) }1728\qquad\textbf{(D) }6\times 1728\qquad \textbf{(E) }2304$

2008 AMC 10, 3

Assume that $ x$ is a positive real number. Which is equivalent to $ \sqrt[3]{x\sqrt{x}}$? $ \textbf{(A)}\ x^{1/6} \qquad \textbf{(B)}\ x^{1/4} \qquad \textbf{(C)}\ x^{3/8} \qquad \textbf{(D)}\ x^{1/2} \qquad \textbf{(E)}\ x$

2004 Moldova Team Selection Test, 2

In the tetrahedron $ABCD$ the radius of its inscribed sphere is $r$ and the radiuses of the exinscribed spheres (each tangent with a face of the tetrahedron and with the planes of the other faces) are $r_A, r_B, r_C, r_D.$ Prove the inequality $$\frac{1}{\sqrt{r_A^2-r_Ar_B+r_B^2}}+\frac{1}{\sqrt{r_B^2-r_Br_C+r_C^2}}+\frac{1}{\sqrt{r_C^2-r_Cr_D+r_D^2}}+\frac{1}{\sqrt{r_D^2-r_Dr_A+r_A^2}}\leq\frac{2}{r}.$$

1972 IMO Shortlist, 5

Prove the following assertion: The four altitudes of a tetrahedron $ABCD$ intersect in a point if and only if \[AB^2 + CD^2 = BC^2 + AD^2 = CA^2 + BD^2.\]

2010 Stanford Mathematics Tournament, 8

A sphere of radius $1$ is internally tangent to all four faces of a regular tetrahedron. Find the tetrahedron's volume.

Kyiv City MO 1984-93 - geometry, 1991.10.5

Diagonal sections of a regular 8-gon pyramid, which are drawn through the smallest and largest diagonals of the base, are equal. At what angle is the plane passing through the vertex, the pyramids and the smallest diagonal of the base inclined to the base? [hide=original wording]Діагональні перерізи правильної 8-кутної піраміди, які Проведені через найменшу і найбільшу діагоналі основи, рівновеликі. Під яким кутом до основи нахилена площина, що проходить через вершину, піраміди і найменшу діагональ основи?[/hide]

2013 ELMO Shortlist, 2

For what polynomials $P(n)$ with integer coefficients can a positive integer be assigned to every lattice point in $\mathbb{R}^3$ so that for every integer $n \ge 1$, the sum of the $n^3$ integers assigned to any $n \times n \times n$ grid of lattice points is divisible by $P(n)$? [i]Proposed by Andre Arslan[/i]