Found problems: 339
1994 Hungary-Israel Binational, 4
An [i]$ n\minus{}m$ society[/i] is a group of $ n$ girls and $ m$ boys. Prove that there exists numbers $ n_0$ and $ m_0$ such that every [i]$ n_0\minus{}m_0$ society[/i] contains a subgroup of five boys and five girls with the following property: either all of the boys know all of the girls or none of the boys knows none of the girls.
2023 Macedonian Team Selection Test, Problem 5
Let $Q(x) = a_{2023}x^{2023}+a_{2022}x^{2022}+\dots+a_{1}x+a_{0} \in \mathbb{Z}[x]$ be a polynomial with integer coefficients. For an odd prime number $p$ we define the polynomial $Q_{p}(x) = a_{2023}^{p-2}x^{2023}+a_{2022}^{p-2}x^{2022}+\dots+a_{1}^{p-2}x+a_{0}^{p-2}.$
Assume that there exist infinitely primes $p$ such that
$$\frac{Q_{p}(x)-Q(x)}{p}$$
is an integer for all $x \in \mathbb{Z}$. Determine the largest possible value of $Q(2023)$ over all such polynomials $Q$.
[i]Authored by Nikola Velov[/i]
2011 Croatia Team Selection Test, 2
There were finitely many persons at a party among whom some were friends. Among any $4$ of them there were either $3$ who were all friends among each other or $3$ who weren't friend with each other. Prove that you can separate all the people at the party in two groups in such a way that in the first group everyone is friends with each other and that all the people in the second group are not friends to anyone else in second group. (Friendship is a mutual relation).
2007 F = Ma, 27
A space station consists of two living modules attached to a central hub on opposite sides of the hub by long corridors of equal length. Each living module contains $N$ astronauts of equal mass. The mass of the space station is negligible compared to the mass of the astronauts, and the size of the central hub and living modules is negligible compared to the length of the corridors. At the beginning of the day, the space station is rotating so that the astronauts feel as if they are in a gravitational field of strength $g$. Two astronauts, one from each module, climb into the central hub, and the remaining astronauts now feel a gravitational field of strength $g'$ . What is the ratio $g'/g$ in terms of $N$?[asy]
import roundedpath;
size(300);
path a = roundedpath((0,-0.3)--(4,-0.3)--(4,-1)--(5,-1)--(5,0),0.1);
draw(scale(+1,-1)*a);
draw(scale(+1,+1)*a);
draw(scale(-1,-1)*a);
draw(scale(-1,+1)*a);
filldraw(circle((0,0),1),white,black);
filldraw(box((-2,-0.27),(2,0.27)),white,white);
draw(arc((0,0),1.5,+35,+150),dashed,Arrow);
draw(arc((0,0),1.5,-150,-35),dashed,Arrow);[/asy]
$ \textbf{(A)}\ 2N/(N-1) $
$ \textbf{(B)}\ N/(N-1) $
$ \textbf{(C)}\ \sqrt{(N-1)/N} $
$ \textbf{(D)}\ \sqrt{N/(N-1)} $
$ \textbf{(E)}\ \text{none of the above} $
PEN R Problems, 3
Prove no three lattice points in the plane form an equilateral triangle.
2016 IMC, 3
Let $n$ be a positive integer, and denote by $\mathbb{Z}_n$ the ring of integers modulo $n$. Suppose that there exists a function $f:\mathbb{Z}_n\to\mathbb{Z}_n$ satisfying the following three properties:
(i) $f(x)\neq x$,
(ii) $f(f(x))=x$,
(iii) $f(f(f(x+1)+1)+1)=x$ for all $x\in\mathbb{Z}_n$.
Prove that $n\equiv 2 \pmod4$.
(Proposed by Ander Lamaison Vidarte, Berlin Mathematical School, Germany)
2018 Saint Petersburg Mathematical Olympiad, 4
$f(x)$ is polynomial with integer coefficients, with module not exceeded $5*10^6$. $f(x)=nx$ has integer root for $n=1,2,...,20$. Prove that $f(0)=0$
2022-2023 OMMC, 22
Find the number of ordered pairs of integers $(x, y)$ with $0 \le x, y \le 40$ where $$\frac{x^2-xy^2+1}{41}$$ is an integer.
1968 Miklós Schweitzer, 1
Consider the endomorphism ring of an Abelian torsion-free (resp. torsion) group $ G$. Prove that this ring is Neumann-regular if and only if $ G$ is a discrete direct sum of groups isomorphic to the additive group of the rationals (resp. ,a discrete direct sum of cyclic groups of prime order). (A ring $ R$ is called Neumann-regular if for every $ \alpha \in R$ there exists a $ \beta \in R$ such that $ \alpha \beta \alpha\equal{}\alpha$.)
[i]E. Freid[/i]
2008 IMC, 4
We say a triple of real numbers $ (a_1,a_2,a_3)$ is [b]better[/b] than another triple $ (b_1,b_2,b_3)$ when exactly two out of the three following inequalities hold: $ a_1 > b_1$, $ a_2 > b_2$, $ a_3 > b_3$. We call a triple of real numbers [b]special[/b] when they are nonnegative and their sum is $ 1$.
For which natural numbers $ n$ does there exist a collection $ S$ of special triples, with $ |S| \equal{} n$, such that any special triple is bettered by at least one element of $ S$?
2009 Indonesia TST, 3
Let $ S\equal{}\{1,2,\ldots,n\}$. Let $ A$ be a subset of $ S$ such that for $ x,y\in A$, we have $ x\plus{}y\in A$ or $ x\plus{}y\minus{}n\in A$. Show that the number of elements of $ A$ divides $ n$.
2009 Romania National Olympiad, 2
[b]a)[/b] Show that the set of nilpotents of a finite, commutative ring, is closed under each of the operations of the ring.
[b]b)[/b] Prove that the number of nilpotents of a finite, commutative ring, divides the number of divisors of zero of the ring.
2008 Romania National Olympiad, 4
Let $ \mathcal G$ be the set of all finite groups with at least two elements.
a) Prove that if $ G\in \mathcal G$, then the number of morphisms $ f: G\to G$ is at most $ \sqrt [p]{n^n}$, where $ p$ is the largest prime divisor of $ n$, and $ n$ is the number of elements in $ G$.
b) Find all the groups in $ \mathcal G$ for which the inequality at point a) is an equality.
1985 Miklós Schweitzer, 6
Determine all finite groups $G$ that have an automorphism $f$ such that $H\not\subseteq f(H)$ for all proper subgroups $H$ of $G$. [B. Kovacs]
2010 IMC, 3
Denote by $S_n$ the group of permutations of the sequence $(1,2,\dots,n).$ Suppose that $G$ is a subgroup of $S_n,$ such that for every $\pi\in G\setminus\{e\}$ there exists a unique $k\in \{1,2,\dots,n\}$ for which $\pi(k)=k.$ (Here $e$ is the unit element of the group $S_n.$) Show that this $k$ is the same for all $\pi \in G\setminus \{e\}.$
1989 IMO Longlists, 82
Let $ A$ be a set of positive integers such that no positive integer greater than 1 divides all the elements of $ A.$ Prove that any sufficiently large positive integer can be written as a sum of elements of $ A.$ (Elements may occur several times in the sum.)
2008 IberoAmerican Olympiad For University Students, 7
Let $A$ be an abelian additive group such that all nonzero elements have infinite order and for each prime number $p$ we have the inequality $|A/pA|\leq p$, where $pA = \{pa |a \in A\}$, $pa = a+a+\cdots+a$ (where the sum has $p$ summands) and $|A/pA|$ is the order of the quotient group $A/pA$ (the index of the subgroup $pA$).
Prove that each subgroup of $A$ of finite index is isomorphic to $A$.
2019 Romania National Olympiad, 2
Let $n \geq 4$ be an even natural number and $G$ be a subgroup of $GL_2(\mathbb{C})$ with $|G| = n.$ Prove that there exists $H \leq G$ such that $\{ I_2 \} \neq H$ and $H \neq G$ such that $XYX^{-1} \in H, \: \forall X \in G$ and $\forall Y \in H$
2013 Miklós Schweitzer, 5
A subalgebra $\mathfrak{h}$ of a Lie algebra $\mathfrak g$ is said to have the $\gamma$ property with respect to a scalar product ${\langle \cdot,\cdot \rangle}$ given on ${\mathfrak g}$ if ${X \in \mathfrak{h}}$ implies ${\langle [X,Y],X\rangle =0}$ for all ${Y \in \mathfrak g}$. Prove that the maximum dimension of ${\gamma}$-property subalgebras of a given ${2}$ step nilpotent Lie algebra with respect to a scalar product is independent of the selection of the scalar product.
[i]Proposed by Péter Nagy Tibor[/i]
1980 Miklós Schweitzer, 5
Let $ G$ be a transitive subgroup of the symmetric group $ S_{25}$ different from $ S_{25}$ and $ A_{25}$. Prove that the order of $ G$ is not divisible by $ 23$.
[i]J. Pelikan[/i]
2011 Romania National Olympiad, 2
[color=darkred]Let $u:[a,b]\to\mathbb{R}$ be a continuous function that has finite left-side derivative $u_l^{\prime}(x)$ in any point $x\in (a,b]$ . Prove that the function $u$ is monotonously increasing if and only if $u_l^{\prime}(x)\ge 0$ , for any $x\in (a,b]$ .[/color]
1990 Turkey Team Selection Test, 6
Let $k\geq 2$ and $n_1, \dots, n_k \in \mathbf{Z}^+$. If $n_2 | (2^{n_1} -1)$, $n_3 | (2^{n_2} -1)$, $\dots$, $n_k | (2^{n_{k-1}} -1)$, $n_1 | (2^{n_k} -1)$, show that $n_1 = \dots = n_k =1$.
2009 IberoAmerican Olympiad For University Students, 7
Let $G$ be a group such that every subgroup of $G$ is subnormal. Suppose that there exists $N$ normal subgroup of $G$ such that $Z(N)$ is nontrivial and $G/N$ is cyclic. Prove that $Z(G)$ is nontrivial. ($Z(G)$ denotes the center of $G$).
[b]Note[/b]: A subgroup $H$ of $G$ is subnormal if there exist subgroups $H_1,H_2,\ldots,H_m=G$ of $G$ such that $H\lhd H_1\lhd H_2 \lhd \ldots \lhd H_m= G$ ($\lhd$ denotes normal subgroup).
2005 Gheorghe Vranceanu, 1
For a natural number $ n\ge 2, $ prove that the $ \text{n-ary} $ direct product of the group of order $ 2 $ is abelian and isomorphic with the group of the power set of a set under symmetric difference.
2010 Iran MO (3rd Round), 7
[b]interesting function[/b]
$S$ is a set with $n$ elements and $P(S)$ is the set of all subsets of $S$ and
$f : P(S) \rightarrow \mathbb N$
is a function with these properties:
for every subset $A$ of $S$ we have $f(A)=f(S-A)$.
for every two subsets of $S$ like $A$ and $B$ we have
$max(f(A),f(B))\ge f(A\cup B)$
prove that number of natural numbers like $x$ such that there exists $A\subseteq S$ and $f(A)=x$ is less than $n$.
time allowed for this question was 1 hours and 30 minutes.