Found problems: 15925
2013 Brazil Team Selection Test, 4
Let $f$ and $g$ be two nonzero polynomials with integer coefficients and $\deg f>\deg g$. Suppose that for infinitely many primes $p$ the polynomial $pf+g$ has a rational root. Prove that $f$ has a rational root.
1986 India National Olympiad, 2
Solve
\[ \left\{ \begin{array}{l}
\log_2 x\plus{}\log_4 y\plus{}\log_4 z\equal{}2 \\
\log_3 y\plus{}\log_9 z\plus{}\log_9 x\equal{}2 \\
\log_4 z\plus{}\log_{16} x\plus{}\log_{16} y\equal{}2 \\
\end{array} \right.\]
2014 AIME Problems, 12
Let $A=\{1,2,3,4\}$, and $f$ and $g$ be randomly chosen (not necessarily distinct) functions from $A$ to $A$. The probability that the range of $f$ and the range of $g$ are disjoint is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m$.
2004 Brazil Team Selection Test, Problem 2
Let $(x+1)^p(x-3)^q=x^n+a_1x^{n-1}+\ldots+a_{n-1}x+a_n$, where $p,q$ are positive integers.
(a) Prove that if $a_1=a_2$, then $3n$ is a perfect square.
(b) Prove that there exists infinitely many pairs $(p,q)$ for which $a_1=a_2$.
2021 Dutch IMO TST, 3
Find all functions $f : R \to R$ with $f (x + yf(x + y))= y^2 + f(x)f(y)$ for all $x, y \in R$.
2021 IMO Shortlist, A1
Let $n$ be a positive integer. Given is a subset $A$ of $\{0,1,...,5^n\}$ with $4n+2$ elements. Prove that there exist three elements $a<b<c$ from $A$ such that $c+2a>3b$.
[i]Proposed by Dominik Burek and Tomasz Ciesla, Poland[/i]
1983 IMO Shortlist, 6
Suppose that ${x_1, x_2, \dots , x_n}$ are positive integers for which $x_1 + x_2 + \cdots+ x_n = 2(n + 1)$. Show that there exists an integer $r$ with $0 \leq r \leq n - 1$ for which the following $n - 1$ inequalities hold:
\[x_{r+1} + \cdots + x_{r+i} \leq 2i+ 1, \qquad \qquad \forall i, 1 \leq i \leq n - r; \]
\[x_{r+1} + \cdots + x_n + x_1 + \cdots+ x_i \leq 2(n - r + i) + 1, \qquad \qquad \forall i, 1 \leq i \leq r - 1.\]
Prove that if all the inequalities are strict, then $r$ is unique and that otherwise there are exactly two such $r.$
1995 Austrian-Polish Competition, 1
Determine all real solutions $(a_1,...,a_n)$ of the following system of equations:
$$\begin{cases}a_3 = a_2 + a_1\\
a_4 = a_3 + a_2\\
...\\
a_n = a_{n-1} + a_{n-2}\\
a_1= a_n +a_{n-1} \\
a_2 = a_1 + a_n \end{cases}$$
2015 USAMO, 1
Solve in integers the equation
\[ x^2+xy+y^2 = \left(\frac{x+y}{3}+1\right)^3. \]
2014 AMC 12/AHSME, 16
Let $P$ be a cubic polynomial with $P(0) = k, P(1) = 2k,$ and $P(-1) = 3k$. What is $P(2) + P(-2)$?
$ \textbf{(A) }0 \qquad\textbf{(B) }k \qquad\textbf{(C) }6k \qquad\textbf{(D) }7k\qquad\textbf{(E) }14k\qquad $
V Soros Olympiad 1998 - 99 (Russia), 10.3
Without using a calculator, find out which number is greater:
$$29^{200}\cdot 2^{151} \,\,\, or \,\,\, 5^{279} \cdot 3^{300}$$
2020 Iran MO (3rd Round), 3
find all $k$ distinct integers $a_1,a_2,...,a_k$ such that there exists an injective function $f$ from reals to themselves such that for each positive integer $n$ we have
$$\{f^n(x)-x| x \in \mathbb{R} \}=\{a_1+n,a_2+n,...,a_k+n\}$$.
2014 Denmark MO - Mohr Contest, 1
Georg chooses three distinct digits among $1, 2, . . . , 9$ and writes them down on three cards. When the cards are laid down next to each other, a three-digit number is formed. Georg tells his mother that the sum of the largest and the second-largest number that can be formed in this manner is $1732$. Can she figure out which three digits Georg has chosen?
2021 Nigerian Senior MO Round 3, 5
Let $f(x)=\frac{P(x)}{Q(x)}$. Where $P(x), Q(x)$ are two non constant polynomials with no common zeros and $P(0)=P(1)=0$. Suppose $f(x)f(\frac{1}{x})=f(x)+f(\frac{1}{x})$ for all infinitely many values of $x$.
a. Show that $deg(P) <deg(Q).$
b. Show that $P'(1)=2Q'(1)- deg(Q). Q(1)$
Here $P'(x)$ denotes the derivatives of $P(x)$ as usual
2024 Assara - South Russian Girl's MO, 4
A parabola $p$ is drawn on the coordinate plane — the graph of the equation $y =-x^2$, and a point $A$ is marked that does not lie on the parabola $p$. All possible parabolas $q$ of the form $y = x^2+ax+b$ are drawn through point $A$, intersecting $p$ at two points $X$ and $Y$ . Prove that all possible $XY$ lines pass through a fixed point in the plane.
[i]P.A.Kozhevnikov[/i]
2010 Chile National Olympiad, 2
Determine which of the following numbers is greater
$$10^{10^{10^{10}}}, (10^{10})!$$
2008 ISI B.Stat Entrance Exam, 10
Two subsets $A$ and $B$ of the $(x,y)$-plane are said to be [i]equivalent[/i] if there exists a function $f: A\to B$ which is both one-to-one and onto.
(i) Show that any two line segments in the plane are equivalent.
(ii) Show that any two circles in the plane are equivalent.
2022 BAMO, B
You are bargaining with a salesperson for the price of an item. Your first offer is $a$ dollars and theirs is $b$ dollars. After you raise your offer by a certain percentage and they lower their offer by the same percentage, you arrive at an agreed price. What is that price, in terms of $a$ and $b$?
2014 BMT Spring, 8
Suppose an integer-valued function $f$ satisfies
$$\sum_{k=1}^{2n+1}f(k)=\ln|2n+1|-4\ln|2n-1|\enspace\text{and}\enspace\sum_{k=0}^{2n}f(k)=4e^n-e^{n-1}$$
for all non-negative integers $n$. Determine $\sum_{n=0}^\infty\frac{f(n)}{2^n}$.
2009 All-Russian Olympiad, 5
Let $ a$, $ b$, $ c$ be three real numbers satisfying that \[ \left\{\begin{array}{c c c} \left(a\plus{}b\right)\left(b\plus{}c\right)\left(c\plus{}a\right)&\equal{}&abc\\ \left(a^3\plus{}b^3\right)\left(b^3\plus{}c^3\right)\left(c^3\plus{}a^3\right)&\equal{}&a^3b^3c^3\end{array}\right.\] Prove that $ abc\equal{}0$.
1977 IMO Longlists, 6
Let $x_1, x_2, \ldots , x_n \ (n \geq 1)$ be real numbers such that $0 \leq x_j \leq \pi, \ j = 1, 2,\ldots, n.$ Prove that if $\sum_{j=1}^n (\cos x_j +1) $ is an odd integer, then $\sum_{j=1}^n \sin x_j \geq 1.$
1996 Greece National Olympiad, 1
Let $a_n$ be a sequence of positive numbers such that:
i) $\dfrac{a_{n+2}}{a_n}=\dfrac{1}{4}$, for every $n\in\mathbb{N}^{\star}$
ii) $\dfrac{a_{k+1}}{a_k}+\dfrac{a_{n+1}}{a_n}=1$, for every $ k,n\in\mathbb{N}^{\star}$ with $|k-n|\neq 1$.
(a) Prove that $(a_n)$ is a geometric progression.
(n) Prove that exists $t>0$, such that $\sqrt{a_{n+1}}\leq \dfrac{1}{2}a_n+t$
2010 CHMMC Winter, Mixer
[b]p1.[/b] Compute $x$ such that $2009^{2010} \equiv x$ (mod $2011$) and $0 \le x < 2011$.
[b]p2.[/b] Compute the number of "words" that can be formed by rearranging the letters of the word "syzygy" so that the y's are evenly spaced. (The $y$'s are evenly spaced if the number of letters (possibly zero) between the first $y$ and the second $y$ is the same as the number of letters between the second $y$ and the third $y$.)
[b]p3.[/b] Let $A$ and $B$ be subsets of the integers, and let $A + B$ be the set containing all sums of the form $a + b$, where $a$ is an element of $A$, and $b$ is an element of $B$. For example, if $A = \{0, 4, 5\}$ and $B =\{-3,-1, 2, 6\}$, then $A + B = \{-3,-1, 1, 2, 3, 4, 6, 7, 10, 11\}$. If $A$ has $1955$ elements and $B$ has $1891$ elements, compute the smallest possible number of elements in $A + B$.
[b]p4.[/b] Compute the sum of all integers of the form $p^n$ where $p$ is a prime, $n \ge 3$, and $p^n \le 1000$.
[b]p5.[/b] In a season of interhouse athletics at Caltech, each of the eight houses plays each other house in a particular sport. Suppose one of the houses has a $1/3$ chance of beating each other house. If the results of the games are independent, compute the probability that they win at least three games in a row.
[b]p6.[/b] A positive integer $n$ is special if there are exactly $2010$ positive integers smaller than $n$ and relatively prime to $n$. Compute the sum of all special numbers.
[b]p7.[/b] Eight friends are playing informal games of ultimate frisbee. For each game, they split themselves up into two teams of four. They want to arrange the teams so that, at the end of the day, each pair of players has played at least one game on the same team. Determine the smallest number of games they need to play in order to achieve this.
[b]p8.[/b] Compute the number of ways to choose five nonnegative integers $a, b, c, d$, and $e$, such that $a + b + c + d + e = 20$.
[b]p9.[/b] Is $23$ a square mod $41$? Is $15$ a square mod $41$?
[b]p10.[/b] Let $\phi (n)$ be the number of positive integers less than or equal to $n$ that are relatively prime to $n$. Compute $ \sum_{d|15015} \phi (d)$.
[b]p11.[/b] Compute the largest possible volume of an regular tetrahedron contained in a cube with volume $1$.
[b]p12.[/b] Compute the number of ways to cover a $4 \times 4$ grid with dominoes.
[b]p13.[/b] A collection of points is called mutually equidistant if the distance between any two of them is the same. For example, three mutually equidistant points form an equilateral triangle in the plane, and four mutually equidistant points form a regular tetrahedron in three-dimensional space. Let $A$, $B$, $C$, $D$, and $E$ be five mutually equidistant points in four-dimensional space. Let $P$ be a point such that $AP = BP = CP = DP = EP = 1$. Compute the side length $AB$.
[b]p14. [/b]Ten turtles live in a pond shaped like a $10$-gon. Because it's a sunny day, all the turtles are sitting in the sun, one at each vertex of the pond. David decides he wants to scare all the turtles back into the pond. When he startles a turtle, it dives into the pond. Moreover, any turtles on the two neighbouring vertices also dive into the pond. However, if the vertex opposite the startled turtle is empty, then a turtle crawls out of the pond and sits at that vertex. Compute the minimum number of times David needs to startle a turtle so that, by the end, all but one of the turtles are in the pond.
[b]p15.[/b] The game hexapawn is played on a $3 \times 3$ chessboard. Each player starts with three pawns on the row nearest him or her. The players take turns moving their pawns. Like in chess, on a player's turn he or she can either
$\bullet$ move a pawn forward one space if that square is empty, or
$\bullet$ capture an opponent's pawn by moving his or her own pawn diagonally forward one space into the opponent's pawn's square.
A player wins when either
$\bullet$ he or she moves a pawn into the last row, or
$\bullet$ his or her opponent has no legal moves.
Eve and Fred are going to play hexapawn. However, they're not very good at it. Each turn, they will pick a legal move at random with equal probability, with one exception: If some move will immediately win the game (by either of the two winning conditions), then he or she will make that move, even if other moves are available. If Eve moves first, compute the probability that she will win.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2005 Indonesia Juniors, day 1
p1. $A$ is a set of numbers. The set $A$ is closed to subtraction, meaning that the result of subtracting two numbers in $A$ will be
returns a number in $A$ as well. If it is known that two members of $A$ are $4$ and $9$, show that:
a. $0\in A$
b. $13 \in A$
c. $74 \in A$
d. Next, list all the members of the set $A$ .
p2. $(2, 0, 4, 1)$ is one of the solutions/answers of $x_1+x_2+x_3+x_4=7$. If all solutions belong on the set of not negative integers , specify as many possible solutions/answers from $x_1+x_2+x_3+x_4=7$
p3. Adi is an employee at a textile company on duty save data. One time Adi was asked by the company leadership to prepare data on production increases over five periods. After searched by Adi only found four data on the increase, namely $4\%$, $9\%$, $7\%$, and $5\%$. One more data, namely the $5$th data, was not found. Investigate increase of 5th data production, if Adi only remembers that the arithmetic mean and median of the five data are the same.
p4. Find all pairs of integers $(x,y)$ that satisfy the system of the following equations:
$$\left\{\begin{array}{l} x(y+1)=y^2-1 \\
y(x+1)=x^2-1
\end{array} \right. $$
p5. Given the following image. $ABCD$ is square, and $E$ is any point outside the square $ABCD$. Investigate whether the relationship $AE^2 + CE^2 = BE^2 +DE^2$ holds in the picture below.
[img]https://cdn.artofproblemsolving.com/attachments/2/5/a339b0e4df8407f97a4df9d7e1aa47283553c1.png[/img]
1999 Irish Math Olympiad, 1
Solve the system of equations:
$ y^2\equal{}(x\plus{}8)(x^2\plus{}2),$
$ y^2\minus{}(8\plus{}4x)y\plus{}(16\plus{}16x\minus{}5x^2)\equal{}0.$