This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1971 IMO Longlists, 34

Let $T_k = k - 1$ for $k = 1, 2, 3,4$ and \[T_{2k-1} = T_{2k-2} + 2^{k-2}, T_{2k} = T_{2k-5} + 2^k \qquad (k \geq 3).\] Show that for all $k$, \[1 + T_{2n-1} = \left[ \frac{12}{7}2^{n-1} \right] \quad \text{and} \quad 1 + T_{2n} = \left[ \frac{17}{7}2^{n-1} \right],\] where $[x]$ denotes the greatest integer not exceeding $x.$

1998 Czech and Slovak Match, 4

Find all functions $f : N\rightarrow N - \{1\}$ satisfying $f (n)+ f (n+1)= f (n+2) +f (n+3) -168$ for all $n \in N$ .

2008 Moldova National Olympiad, 9.1

Let $ f_m: \mathbb R \to \mathbb R$, $ f_m(x)\equal{}(m^2\plus{}m\plus{}1)x^2\minus{}2(m^2\plus{}1)x\plus{}m^2\minus{}m\plus{}1,$ where $ m \in \mathbb R$. 1) Find the fixed common point of all this parabolas. 2) Find $ m$ such that the distance from that fixed point to $ Oy$ is minimal.

2009 Indonesia TST, 1

Tags: algebra
Let $ [a]$ be the integer such that $ [a]\le a<[a]\plus{}1$. Find all real numbers $ (a,b,c)$ such that \[ \{a\}\plus{}[b]\plus{}\{c\}\equal{}2.9\\\{b\}\plus{}[c]\plus{}\{a\}\equal{}5.3\\\{c\}\plus{}[a]\plus{}\{b\}\equal{}4.0.\]

2024 Saint Petersburg Mathematical Olympiad, 4

Let's consider all possible quadratic trinomials of the form $x^2 + ax + b$, where $a$ and $b$ are positive integers not exceeding some positive integer $N$. Prove that the number of pairs of such trinomials having a common root does not exceed $N^2$.

2012 Junior Balkan Team Selection Tests - Romania, 1

Show that, for all positive real numbers $a, b, c$ such that $abc = 1$, the inequality $$\frac{1}{1 + a^2 + (b + 1)^2} +\frac{1}{1 + b^2 + (c + 1)^2} +\frac{1}{1 + c^2 + (a + 1)^2} \le \frac{1}{2}$$

2007 Gheorghe Vranceanu, 3

Let be a function $ s:\mathbb{N}^2\longrightarrow \mathbb{N} $ that sends $ (m,n) $ to the number of solutions in $ \mathbb{N}^n $ of the equation: $$ x_1+x_2+\cdots +x_n=m $$ [b]1)[/b] Prove that: $$ s(m+1,n+1)=s(m,n)+s(m,n+1) =\prod_{r=1}^n\frac{m-r+1}{r} ,\quad\forall m,n\in\mathbb{N} $$ [b]2)[/b] Find $ \max\left\{ a_1a_2\cdots a_{20}\bigg| a_1+a_2+\cdots +a_{20}=2007, a_1,a_2,\ldots a_{20}\in\mathbb{N} \right\} . $

2007 Balkan MO Shortlist, N3

i thought that this problem was in mathlinks but when i searched i didn't find it.so here it is: Find all positive integers m for which for all $\alpha,\beta \in \mathbb{Z}-\{0\}$ \[ \frac{2^m \alpha^m-(\alpha+\beta)^m-(\alpha-\beta)^m}{3 \alpha^2+\beta^2} \in \mathbb{Z} \]

2017 Harvard-MIT Mathematics Tournament, 9

Tags: algebra
Find the minimum value of $\sqrt{58-42x}+\sqrt{149-140\sqrt{1-x^2}}$ where $-1 \le x \le 1$.

2008 Peru IMO TST, 3

Tags: algebra
Given a positive integer $n$, consider the sequence $(a_i)$, $1 \leq i \leq 2n$, defined as follows: $a_{2k-1} = -k, 1 \leq k \leq n$ $a_{2k} = n-k+1, 1 \leq k \leq n.$ We call a pair of numbers $(b,c)$ good if the following conditions are met: $i) 1 \leq b < c \leq 2n,$ $ii) \sum_{j=b}^{c}a_j = 0$ If $B(n)$ is the number of good pairs corresponding to $n$, prove that there are infinitely many $n$ for which $B(n) = n$.

2000 Balkan MO, 1

Find all functions $f: \mathbb R \to \mathbb R$ such that \[ f( xf(x) + f(y) ) = f^2(x) + y \] for all $x,y\in \mathbb R$.

DMM Devil Rounds, 2010

[b]p1.[/b] Find all $x$ such that $(\ln (x^4))^2 = (\ln (x))^6$. [b]p2.[/b] On a piece of paper, Alan has written a number $N$ between $0$ and $2010$, inclusive. Yiwen attempts to guess it in the following manner: she can send Alan a positive number $M$, which Alan will attempt to subtract from his own number, which we will call $N$. If $M$ is less than or equal $N$, then he will erase $N$ and replace it with $N -M$. Otherwise, Alan will tell Yiwen that $M > N$. What is the minimum number of attempts that Yiwen must make in order to determine uniquely what number Alan started with? [b]p3.[/b] How many positive integers between $1$ and $50$ have at least $4$ distinct positive integer divisors? (Remember that both $1$ and $n$ are divisors of $n$.) [b]p4.[/b] Let $F_n$ denote the $n^{th}$ Fibonacci number, with $F_0 = 0$ and $F_1 = 1$. Find the last digit of $$\sum^{97!+4}_{i=0}F_i.$$ [b]p5.[/b] Find all prime numbers $p$ such that $2p + 1$ is a perfect cube. [b]p6.[/b] What is the maximum number of knights that can be placed on a $9\times 9$ chessboard such that no two knights attack each other? [b]p7.[/b] $S$ is a set of $9$ consecutive positive integers such that the sum of the squares of the $5$ smallest integers in the set is the sum of the squares of the remaining $4$. What is the sum of all $9$ integers? [b]p8.[/b] In the following infinite array, each row is an arithmetic sequence, and each column is a geometric sequence. Find the sum of the infinite sequence of entries along the main diagonal. [img]https://cdn.artofproblemsolving.com/attachments/5/1/481dd1e496fed6931ee2912775df630908c16e.png[/img] [b]p9.[/b] Let $x > y > 0$ be real numbers. Find the minimum value of $\frac{x}{y} + \frac{4x}{x-y}$ . [b]p10.[/b] A regular pentagon $P = A_1A_2A_3A_4A_5$ and a square $S = B_1B_2B_3B_4$ are both inscribed in the unit circle. For a given pentagon $P$ and square $S$, let $f(P, S)$ be the minimum length of the minor arcs $A_iB_j$ , for $1 \le i \le 5$ and $1 \le j \le4$. Find the maximum of $f(P, S)$ over all pairs of shapes. [b]p11.[/b] Find the sum of the largest and smallest prime factors of $9^4 + 3^4 + 1$. [b]p12.[/b] A transmitter is sending a message consisting of $4$ binary digits (either ones or zeros) to a receiver. Unfortunately, the transmitter makes errors: for each digit in the message, the probability that the transmitter sends the correct digit to the receiver is only $80\%$. (Errors are independent across all digits.) To avoid errors, the receiver only accepts a message if the sum of the first three digits equals the last digit modulo $2$. If the receiver accepts a message, what is the probability that the message was correct? [b]p13.[/b] Find the integer $N$ such that $$\prod^{8}_{i=0}\sec \left( \frac{\pi}{9}2^i \right)= N.$$ PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 Iran MO (3rd round), 5

Find all polynomials $p(x)\in\mathbb{R}[x]$ such that for all $x\in \mathbb{R}$: $p(5x)^2-3=p(5x^2+1)$ such that: $a) p(0)\neq 0$ $b) p(0)=0$

2007 China Team Selection Test, 1

When all vertex angles of a convex polygon are equal, call it equiangular. Prove that $ p > 2$ is a prime number, if and only if the lengths of all sides of equiangular $ p$ polygon are rational numbers, it is a regular $ p$ polygon.

1998 Iran MO (3rd Round), 3

Find all functions $f : \mathbb R \to \mathbb R$ such that for all $x, y,$ \[f(f(x) + y) = f(x^2 - y) + 4f(x)y.\]

III Soros Olympiad 1996 - 97 (Russia), 10.9

For any positive $a$ and $b$, find positive solutions of the system $$\begin{cases} \dfrac{a^2}{x^2}- \dfrac{b^2}{y^2}=8(y^4-x^4) \\ ax-by=x^4-y^4 \end{cases}$$

2010 Iran MO (3rd Round), 3

prove that for each natural number $n$ there exist a polynomial with degree $2n+1$ with coefficients in $\mathbb{Q}[x]$ such that it has exactly $2$ complex zeros and it's irreducible in $\mathbb{Q}[x]$.(20 points)

2020 JBMO Shortlist, 3

Find all triples of positive real numbers $(a, b, c)$ so that the expression $M = \frac{(a + b)(b + c)(a + b + c)}{abc}$ gets its least value.

2023 Germany Team Selection Test, 1

Tags: sequence , algebra
Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers with the property that $$(a_{n+1})^2 + a_na_{n+2} \leq a_n + a_{n+2}$$ for all positive integers $n$. Show that $a_{2022}\leq 1$.

2020 BMT Fall, 9

Tags: algebra
A sequence $a_n$ is defined by $a_0 = 0$, and for all $n \ge 1$, $a_n = a_{n-1} + (-1)^n \cdot n^2$. Compute $a_{100}$

2015 BMT Spring, Tie 2

Tags: algebra
Let $S_n = 1 + 2 + ,,, + n$. Define $$T_n =\frac{S_2}{S_2- 1}\cdot \frac{S_3}{S_3 - 1}\cdot ... \cdot \frac{S_n}{S_n - 1}.$$ Find $T_{2015}.$

1983 IMO Shortlist, 7

Let $a$ be a positive integer and let $\{a_n\}$ be defined by $a_0 = 0$ and \[a_{n+1 }= (a_n + 1)a + (a + 1)a_n + 2 \sqrt{a(a + 1)a_n(a_n + 1)} \qquad (n = 1, 2 ,\dots ).\] Show that for each positive integer $n$, $a_n$ is a positive integer.

1976 IMO Longlists, 11

Let $P_{1}(x)=x^{2}-2$ and $P_{j}(x)=P_{1}(P_{j-1}(x))$ for j$=2,\ldots$ Prove that for any positive integer n the roots of the equation $P_{n}(x)=x$ are all real and distinct.

2022 China Team Selection Test, 5

Let $n$ be a positive integer, $x_1,x_2,\ldots,x_{2n}$ be non-negative real numbers with sum $4$. Prove that there exist integer $p$ and $q$, with $0 \le q \le n-1$, such that \[ \sum_{i=1}^q x_{p+2i-1} \le 1 \mbox{ and } \sum_{i=q+1}^{n-1} x_{p+2i} \le 1, \] where the indices are take modulo $2n$. [i]Note:[/i] If $q=0$, then $\sum_{i=1}^q x_{p+2i-1}=0$; if $q=n-1$, then $\sum_{i=q+1}^{n-1} x_{p+2i}=0$.

2008 Indonesia TST, 4

Let $a, b, c$ be positive reals. Prove that $$\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\left(\frac{c}{c+a}\right)^2\ge \frac34$$