This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2017 BMO TST, 3

Tags: function , algebra
Find all functions $f : \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that : $f(x)f(y)f(z)=9f(z+xyf(z))$, where $x$, $y$, $z$, are three positive real numbers.

2015 Canadian Mathematical Olympiad Qualification, 2

A polynomial $f(x)$ with integer coefficients is said to be [i]tri-divisible[/i] if $3$ divides $f(k)$ for any integer $k$. Determine necessary and sufficient conditions for a polynomial to be tri-divisible.

2019 Harvard-MIT Mathematics Tournament, 7

In an election for the Peer Pressure High School student council president, there are 2019 voters and two candidates Alice and Celia (who are voters themselves). At the beginning, Alice and Celia both vote for themselves, and Alice's boyfriend Bob votes for Alice as well. Then one by one, each of the remaining 2016 voters votes for a candidate randomly, with probabilities proportional to the current number of the respective candidate's votes. For example, the first undecided voter David has a $\tfrac{2}{3}$ probability of voting for Alice and a $\tfrac{1}{3}$ probability of voting for Celia. What is the probability that Alice wins the election (by having more votes than Celia)?

2015 Romania Team Selection Tests, 4

Let $k$ be a positive integer congruent to $1$ modulo $4$ which is not a perfect square and let $a=\frac{1+\sqrt{k}}{2}$. Show that $\{\left \lfloor{a^2n}\right \rfloor-\left \lfloor{a\left \lfloor{an}\right \rfloor}\right \rfloor : n \in \mathbb{N}_{>0}\}=\{1 , 2 , \ldots ,\left \lfloor{a}\right \rfloor\}$.

2008 IMO Shortlist, 7

Prove that for any four positive real numbers $ a$, $ b$, $ c$, $ d$ the inequality \[ \frac {(a \minus{} b)(a \minus{} c)}{a \plus{} b \plus{} c} \plus{} \frac {(b \minus{} c)(b \minus{} d)}{b \plus{} c \plus{} d} \plus{} \frac {(c \minus{} d)(c \minus{} a)}{c \plus{} d \plus{} a} \plus{} \frac {(d \minus{} a)(d \minus{} b)}{d \plus{} a \plus{} b}\ge 0\] holds. Determine all cases of equality. [i]Author: Darij Grinberg (Problem Proposal), Christian Reiher (Solution), Germany[/i]

2016 Polish MO Finals, 5

There are given two positive real number $a<b$. Show that there exist positive integers $p, \ q, \ r, \ s$ satisfying following conditions: $1$. $a< \frac{p}{q} < \frac{r}{s} < b$. $2.$ $p^2+q^2=r^2+s^2$.

2020 CIIM, 6

For a set $A$, we define $A + A = \{a + b: a, b \in A \}$. Determine whether there exists a set $A$ of positive integers such that $$\sum_{a \in A} \frac{1}{a} = +\infty \quad \text{and} \quad \lim_{n \rightarrow +\infty} \frac{|(A+A) \cap \{1,2,\cdots,n \}|}{n}=0.$$ [hide=Note]Google translated from [url=http://ciim.uan.edu.co/ciim-2020-pruebas-virtuales/pruebas-virtuales]http://ciim.uan.edu.co/ciim-2020-pruebas-virtuales/pruebas-virtuales[/url][/hide]

2015 Moldova Team Selection Test, 1

Let $c\in \Big(0,\dfrac{\pi}{2}\Big) , a = \Big(\dfrac{1}{sin(c)}\Big)^{\dfrac{1}{cos^2 (c)}}, b = \Big(\dfrac{1}{cos(c)}\Big)^{\dfrac{1}{sin^2 (c)}}$. \\Prove that at least one of $a,b$ is bigger than $\sqrt[11]{2015}$.

2007 Postal Coaching, 2

Let $a_1, a_2, a_3$ be three distinct real numbers. Define $$\begin{cases} b_1=\left(1+\dfrac{a_1a_2}{a_1-a_2}\right)\left(1+\dfrac{a_1a_3}{a_1-a_3}\right) \\ \\ b_2=\left(1+\dfrac{a_2a_3}{a_2-a_3}\right)\left(1+\dfrac{a_2a_1}{a_2-a_1}\right) \\ \\ b_3=\left(1+\dfrac{a_3a_1}{a_3-a_1}\right)\left(1+\dfrac{a_3a_2}{a_3-a_2}\right) \end {cases}$$ Prove that $$1 + |a_1b_1+a_2b_2+a_3b_3| \le (1+|a_1|) (1+|a_2|)(1+|a_3|)$$ When does equality hold?

2004 Italy TST, 3

Find all functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that for all $m,n\in\mathbb{N}$, \[(2^m+1)f(n)f(2^mn)=2^mf(n)^2+f(2^mn)^2+(2^m-1)^2n. \]

2002 AMC 10, 11

Let $P(x)=kx^3+2k^2x^2+k^3$. Find the sum of all real numbers $k$ for which $x-2$ is a factor of $P(x)$. $\textbf{(A) }-8\qquad\textbf{(B) }-4\qquad\textbf{(C) }0\qquad\textbf{(D) }5\qquad\textbf{(E) }8$

1998 IMO Shortlist, 2

Let $r_{1},r_{2},\ldots ,r_{n}$ be real numbers greater than or equal to 1. Prove that \[ \frac{1}{r_{1} + 1} + \frac{1}{r_{2} + 1} + \cdots +\frac{1}{r_{n}+1} \geq \frac{n}{ \sqrt[n]{r_{1}r_{2} \cdots r_{n}}+1}. \]

2018 Azerbaijan IZhO TST, 1

Tags: algebra
Problem 3. Suppose that the equation x^3-ax^2+bx-a=0 has three positive real roots (b>0). Find the minimum value of the expression: (b-a)(b^3+3a^3)

2023 China Second Round, 5

Find the sum of the smallest 20 positive real solutions of the equation $\sin x=\cos 2x .$

2017 Iran Team Selection Test, 6

Let $k>1$ be an integer. The sequence $a_1,a_2, \cdots$ is defined as: $a_1=1, a_2=k$ and for all $n>1$ we have: $a_{n+1}-(k+1)a_n+a_{n-1}=0$ Find all positive integers $n$ such that $a_n$ is a power of $k$. [i]Proposed by Amirhossein Pooya[/i]

2023 All-Russian Olympiad, 1

Tags: algebra , quadratic
Given are two monic quadratics $f(x), g(x)$ such that $f, g, f+g$ have two distinct real roots. Suppose that the difference of the roots of $f$ is equal to the difference of the roots of $g$. Prove that the difference of the roots of $f+g$ is not bigger than the above common difference.

2016 Canada National Olympiad, 2

Consider the following system of $10$ equations in $10$ real variables $v_1, \ldots, v_{10}$: \[v_i = 1 + \frac{6v_i^2}{v_1^2 + v_2^2 + \cdots + v_{10}^2} \qquad (i = 1, \ldots, 10).\] Find all $10$-tuples $(v_1, v_2, \ldots , v_{10})$ that are solutions of this system.

2023 Kyiv City MO Round 1, Problem 2

Tags: algebra
Non-zero real numbers $a, b$ and $c$ are given such that $ab+bc+ac=0$. Prove that numbers $a+b+c$ and $\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}$ are either both positive or both negative. [i]Proposed by Mykhailo Shtandenko[/i]

2014 Contests, A1

$\boxed{\text{A1}}$Let $a,b,c$ be positive reals numbers such that $a+b+c=1$.Prove that $2(a^2+b^2+c^2)\ge \frac{1}{9}+15abc$

2017 China Northern MO, 1

Tags: algebra
Define sequence $(a_n):a_1=\text{e},a_2=\text{e}^3,\text{e}^{1-k}a_n^{k+2}=a_{n+1}a_{n-1}^{2k}$ for all $n\geq2$, where $k$ is a positive real number. Find $\prod_{i=1}^{2017}a_i$.

2023 JBMO Shortlist, A7

Let $a_1,a_2,a_3,\ldots,a_{250}$ be real numbers such that $a_1=2$ and $$a_{n+1}=a_n+\frac{1}{a_n^2}$$ for every $n=1,2, \ldots, 249$. Let $x$ be the greatest integer which is less than $$\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_{250}}$$ How many digits does $x$ have? [i]Proposed by Miroslav Marinov, Bulgaria[/i]

2010 Harvard-MIT Mathematics Tournament, 1

Suppose that $p(x)$ is a polynomial and that $p(x)-p^\prime (x)=x^2+2x+1$. Compute $p(5)$.

2008 Hong Kong TST, 2

Find the total number of solutions to the following system of equations: \[ \begin{cases} a^2\plus{}bc\equiv a\pmod {37}\\ b(a\plus{}d)\equiv b\pmod {37}\\ c(a\plus{}d)\equiv c\pmod{37}\\ bc\plus{}d^2\equiv d\pmod{37}\\ ad\minus{}bc\equiv 1\pmod{37}\end{cases}\]

2022 South East Mathematical Olympiad, 1

Let $x_1,x_2,x_3$ be three positive real roots of the equation $x^3+ax^2+bx+c=0$ $(a,b,c\in R)$ and $x_1+x_2+x_3\leq 1. $ Prove that $$a^3(1+a+b)-9c(3+3a+a^2)\leq 0$$

1989 IMO Longlists, 3

Ali Barber, the carpet merchant, has a rectangular piece of carpet whose dimensions are unknown. Unfortunately, his tape measure is broken and he has no other measuring instruments. However, he finds that if he lays it flat on the floor of either of his storerooms, then each corner of the carpet touches a different wall of that room. If the two rooms have dimensions of 38 feet by 55 feet and 50 feet by 55 feet, what are the carpet dimensions?