This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2023 USA IMO Team Selection Test, 4

Let $\lfloor \bullet \rfloor$ denote the floor function. For nonnegative integers $a$ and $b$, their [i]bitwise xor[/i], denoted $a \oplus b$, is the unique nonnegative integer such that $$ \left \lfloor \frac{a}{2^k} \right \rfloor+ \left\lfloor\frac{b}{2^k} \right\rfloor - \left\lfloor \frac{a\oplus b}{2^k}\right\rfloor$$ is even for every $k \ge 0$. Find all positive integers $a$ such that for any integers $x>y\ge 0$, we have \[ x\oplus ax \neq y \oplus ay. \] [i]Carl Schildkraut[/i]

2002 JBMO ShortLists, 7

Tags: algebra
Consider integers $ a_i,i\equal{}\overline{1,2002}$ such that $ a_1^{ \minus{} 3} \plus{} a_2^{ \minus{} 3} \plus{} \ldots \plus{} a_{2002}^{ \minus{} 3} \equal{} \frac {1}{2}$ Prove that at least 3 of the numbers are equal.

1964 Swedish Mathematical Competition, 3

Find a polynomial with integer coefficients which has $\sqrt2 + \sqrt3$ and $\sqrt2 + \sqrt[3]{3}$ as roots.

2009 IMO Shortlist, 6

Let $k$ be a positive integer. Show that if there exists a sequence $a_0,a_1,\ldots$ of integers satisfying the condition \[a_n=\frac{a_{n-1}+n^k}{n}\text{ for all } n\geq 1,\] then $k-2$ is divisible by $3$. [i]Proposed by Okan Tekman, Turkey[/i]

1989 IMO Longlists, 26

Tags: algebra
Let $ b_1, b_2, \ldots, b_{1989}$ be positive real numbers such that the equations \[ x_{r\minus{}1} \minus{} 2x_r \plus{} x_{r\plus{}1} \plus{} b_rx_r \equal{} 0 \quad (1 \leq r \leq 1989)\] have a solution with $ x_0 \equal{} x_{1989} \equal{} 0$ but not all of $ x_1, \ldots, x_{1989}$ are equal to zero. Prove that \[ \sum^{1989}_{k\equal{}1} b_k \geq \frac{2}{995}.\]

2002 Bosnia Herzegovina Team Selection Test, 1

Tags: algebra
Let $x,y,z$ be real numbers that satisfy \[x+y+z= 3 \ \ \text{ and } \ \ xy+yz+zx= a\]where $a$ is a real parameter. Find the value of $a$ for which the difference between the maximum and minimum possible values of $x$ equals $8$.

2007 All-Russian Olympiad Regional Round, 9.7

An infinite increasing arithmetical progression consists of positive integers and contains a perfect cube. Prove that this progression also contains a term which is a perfect cube but not a perfect square.

2010 Kosovo National Mathematical Olympiad, 2

Tags: algebra
The equation is given $x^2-(m+3)x+m+2=0$. If $x_1$ and $x_2$ are its solutions find all $m$ such that $\frac{x_1}{x_1+1}+\frac{x_2}{x_2+1}=\frac{13}{10}$.

2012 Iran Team Selection Test, 2

Let $g(x)$ be a polynomial of degree at least $2$ with all of its coefficients positive. Find all functions $f:\mathbb R^+ \longrightarrow \mathbb R^+$ such that \[f(f(x)+g(x)+2y)=f(x)+g(x)+2f(y) \quad \forall x,y\in \mathbb R^+.\] [i]Proposed by Mohammad Jafari[/i]

1998 Abels Math Contest (Norwegian MO), 1

Let $a_0,a_1,a_2,...$ be an infinite sequence of positive integers such that $a_0 = 1$ and $a_i^2 > a_{i-1}a_{i+1}$ for all $i > 0$. (a) Prove that $a_i < a_1^i$ for all $i > 1$. (b) Prove that $a_i > i$ for all $i$.

2024 Argentina National Olympiad Level 2, 4

Tags: algebra
Find all pairs $(a, b)$ of positive rational numbers such that $$\sqrt{a}+\sqrt{b} = \sqrt{2+\sqrt{3}}.$$

EMCC Guts Rounds, 2011

[u]Round 6[/u] [b]p16.[/b] Let $a_1, a_2, ... , a_{2011}$ be a sequence of numbers such that $a_1 = 2011$ and $a_1+a_2+...+a_n = n^2 \cdot a_n$ for $n = 1, 2, ... 2011$. (That is, $a_1 = 1^2\cdot a_1$, $a_1 + a_2 = 2^2 \cdot a_2$, $...$) Compute $a_{2011}$. [b]p17.[/b] Three rectangles, with dimensions $3 \times 5$, $4 \times 2$, and $6 \times 4$, are each divided into unit squares which are alternately colored black and white like a checkerboard. Each rectangle is cut along one of its diagonals into two triangles. For each triangle, let m be the total black area and n the total white area. Find the maximum value of $|m - n|$ for the $6$ triangles. [b]p18.[/b] In triangle $ABC$, $\angle BAC = 90^o$, and the length of segment $AB$ is $2011$. Let $M$ be the midpoint of $BC$ and $D$ the midpoint of $AM$. Let $E$ be the point on segment $AB$ such that $EM \parallel CD$. What is the length of segment $BE$? [u]Round 7[/u] [b]p19.[/b] How many integers from $1$ to $100$, inclusive, can be expressed as the difference of two perfect squares? (For example, $3 = 2^2 - 1^2$). [b]p20.[/b] In triangle $ABC$, $\angle ABC = 45$ and $\angle ACB = 60^o$. Let $P$ and $Q$ be points on segment $BC$, $F$ a point on segment $AB$, and $E$ a point on segment $AC$ such that $F Q \parallel AC$ and $EP \parallel AB$. Let $D$ be the foot of the altitude from $A$ to $BC$. The lines $AD$, $F Q$, and $P E$ form a triangle. Find the positive difference, in degrees, between the largest and smallest angles of this triangle. [b]p21.[/b] For real number $x$, $\lceil x \rceil$ is equal to the smallest integer larger than or equal to $x$. For example, $\lceil 3 \rceil = 3$ and $\lceil 2.5 \rceil = 3$. Let $f(n)$ be a function such that $f(n) = \left\lceil \frac{n}{2}\right\rceil + f\left( \left\lceil \frac{n}{2}\right\rceil\right)$ for every integer $n$ greater than $1$. If $f(1) = 1$, find the maximum value of $f(k) - k$, where $k$ is a positive integer less than or equal to $2011$. [u]Round 8[/u] The answer to each of the three questions in this round depends on the answer to one of the other questions. There is only one set of correct answers to these problems; however, each question will be scored independently, regardless of whether the answers to the other questions are correct. [b]p22.[/b] Let $W$ be the answer to problem 24 in this guts round. Let $f(a) = \frac{1}{1 -\frac{1}{1- \frac{1}{a}}}$. Determine$|f(2) + ... + f(W)|$. [b]p23.[/b] Let $X$ be the answer to problem $22$ in this guts round. How many odd perfect squares are less than $8X$? [b]p24.[/b] Let $Y$ be the answer to problem $23$ in this guts round. What is the maximum number of points of intersections of two regular $(Y - 5)$-sided polygons, if no side of the first polygon is parallel to any side of the second polygon? [u]Round 9[/u] [b]p25.[/b] Cross country skiers $s_1, s_2, s_3, ..., s_7$ start a race one by one in that order. While each skier skis at a constant pace, the skiers do not all ski at the same rate. In the course of the race, each skier either overtakes another skier or is overtaken by another skier exactly two times. Find all the possible orders in which they can finish. Write each possible finish as an ordered septuplet $(a, b, c, d, e, f, g)$ where $a, b, c, d, e, f, g$ are the numbers $1-7$ in some order. (So a finishes first, b finishes second, etc.) [b]p26.[/b] Archie the Alchemist is making a list of all the elements in the world, and the proportion of earth, air, fire, and water needed to produce each. He writes the proportions in the form E:A:F:W. If each of the letters represents a whole number from $0$ to $4$, inclusive, how many different elements can Archie list? Note that if Archie lists wood as $2:0:1:2$, then $4:0:2:4$ would also produce wood. In addition, $0:0:0:0$ does not produce an element. [b]p27.[/b] Let $ABCD$ be a rectangle with $AB = 10$ and $BC = 12$. Let $M$ be the midpoint of $CD$, and $P$ be the point on $BM$ such that $DP = DA$. Find the area of quadrilateral $ABPD$. [u]Round 10[/u] [b]p28.[/b] David the farmer has an infinitely large grass-covered field which contains a straight wall. He ties his cow to the wall with a rope of integer length. The point where David ties his rope to the wall divides the wall into two parts of length $a$ and $b$, where $a > b$ and both are integers. The rope is shorter than the wall but is longer than $a$. Suppose that the cow can reach grass covering an area of $\frac{165\pi}{2}$. Find the ratio $\frac{a}{b}$ . You may assume that the wall has $0$ width. [b]p29.[/b] Let $S$ be the number of ordered quintuples $(a, b, x, y, n)$ of positive integers such that $$\frac{a}{x}+\frac{b}{y}=\frac{1}{n}$$ $$abn = 2011^{2011}$$ Compute the remainder when $S$ is divided by $2012$. [b]p30.[/b] Let $n$ be a positive integer. An $n \times n$ square grid is formed by $n^2$ unit squares. Each unit square is then colored either red or blue such that each row or column has exactly $10$ blue squares. A move consists of choosing a row or a column, and recolor each unit square in the chosen row or column – if it is red, we recolor it blue, and if it is blue, we recolor it red. Suppose that it is possible to obtain fewer than $10n$ blue squares after a sequence of finite number of moves. Find the maximum possible value of $n$. PS. You should use hide for answers. First rounds have been posted [url=https://artofproblemsolving.com/community/c4h2786905p24497746]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2003 AMC 12-AHSME, 21

The graph of the polynomial \[P(x) \equal{} x^5 \plus{} ax^4 \plus{} bx^3 \plus{} cx^2 \plus{} dx \plus{} e\] has five distinct $ x$-intercepts, one of which is at $ (0,0)$. Which of the following coefficients cannot be zero? $ \textbf{(A)}\ a \qquad \textbf{(B)}\ b \qquad \textbf{(C)}\ c \qquad \textbf{(D)}\ d \qquad \textbf{(E)}\ e$

2015 ISI Entrance Examination, 4

Let $p(x) = x^7 +x^6 + b_5 x^5 + \cdots +b_0 $ and $q(x) = x^5 + c_4 x^4 + \cdots +c_0$ . If $p(i)=q(i)$ for $i=1,2,3,\cdots,6$ . Show that there exists a negative integer r such that $p(r)=q(r)$ .

1967 IMO Shortlist, 2

The equation \[x^5 + 5 \lambda x^4 - x^3 + (\lambda \alpha - 4)x^2 - (8 \lambda + 3)x + \lambda \alpha - 2 = 0\] is given. Determine $\alpha$ so that the given equation has exactly (i) one root or (ii) two roots, respectively, independent from $\lambda.$

2001 Cuba MO, 8

Find all real solutions of the equation $x + cos x = 1$.

2020 Stars of Mathematics, 4

Let $a_0 = 1, \ a_1 = 2,$ and $a_2 = 10,$ and define $a_{k+2} = a_{k+1}^3+a_k^2+a_{k-1}$ for all positive integers $k.$ Is it possible for some $a_x$ to be divisible by $2021^{2021}?$ [i]Flavian Georgescu[/i]

2023 OMpD, 2

Let $C$ be a fixed circle, $u > 0$ be a fixed real and let $v_0 , v_1 , v_2 , \ldots$ be a sequence of positive real numbers. Two ants $A$ and $B$ walk around the perimeter of $C$ in opposite directions, starting from the same starting point. Ant $A$ has a constant speed $u$, while ant $B$ has an initial speed $v_0$. For each positive integer $n$, when the two ants collide for the $n$−th time, they change the directions in which they walk around the perimeter of $C$, with ant $A$ remaining at speed $u$ and ant $B$ stops walking at speed $v_{n-1}$ to walk at speed $v_n$. (a) If the sequence $\{v_n\}$ is strictly increasing, with $\lim_{n\rightarrow \infty} v_n = +\infty$, prove that there is exactly one point in $C$ that ant $A$ will pass "infinitely" many times. (b) Prove that there is a sequence $\{v_n\}$ with $\lim_{n\rightarrow\infty} v_n = +\infty$, such that ant $A$ will pass "infinitely" many times through all points on the circle $C$.

2014 Contests, 2

find all polynomials with integer coefficients that $P(\mathbb{Z})= ${$p(a):a\in \mathbb{Z}$} has a Geometric progression.

2006 Taiwan TST Round 1, 2

Tags: function , algebra
Let $\mathbb{N}$ be the set of all positive integers. The function $f: \mathbb{N} \to \mathbb{N}$ satisfies $f(1)=3, f(mn)=f(m)f(n)-f(m+n)+2$ for all $m,n \in \mathbb{N}$. Prove that $f$ does not exist. Comment: The original problem asked for the value of $f(2006)$, which obviously does not exist when $f$ does not. This was probably a mistake by the Olympiad committee. Hence the modified problem.

DMM Individual Rounds, 2010

[b]p1.[/b] Ana, Bob, Cho, Dan, and Eve want to use a microwave. In order to be fair, they choose a random order to heat their food in (all orders have equal probability). Ana's food needs $5$ minutes to cook, Bob's food needs $7$ minutes, Cho's needs $1$ minute, Dan's needs $12$ minutes, and Eve's needs $5$ minutes. What is the expected number of minutes Bob has to wait for his food to be done? [b]p2.[/b] $ABC$ is an equilateral triangle. $H$ lies in the interior of $ABC$, and points $X$, $Y$, $Z$ lie on sides $AB, BC, CA$, respectively, such that $HX\perp AB$, $HY \perp BC$, $HZ\perp CA$. Furthermore, $HX =2$, $HY = 3$, $HZ = 4$. Find the area of triangle $ABC$. [b]p3.[/b] Amy, Ben, and Chime play a dice game. They each take turns rolling a die such that the $first$ person to roll one of his favorite numbers wins. Amy's favorite number is $1$, Ben's favorite numbers are $2$ and $3$, and Chime's are $4$, $5$, and $6$. Amy rolls first, Ben rolls second, and Chime rolls third. If no one has won after Chime's turn, they repeat the sequence until someone has won. What's the probability that Chime wins the game? [b]p4.[/b] A point $P$ is chosen randomly in the interior of a square $ABCD$. What is the probability that the angle $\angle APB$ is obtuse? [b]p5.[/b] Let $ABCD$ be the quadrilateral with vertices $A = (3, 9)$, $B = (1, 1)$, $C = (5, 3)$, and $D = (a, b)$, all of which lie in the first quadrant. Let $M$ be the midpoint of $AB$, $N$ the midpoint of $BC$, $O$ the midpoint of $CD$, and $P$ the midpoint of $AD$. If $MNOP$ is a square, find $(a, b)$. [b]p6.[/b] Let $M$ be the number of positive perfect cubes that divide $60^{60}$. What is the prime factorization of $M$? [b]p7.[/b] Given that $x$, $y$, and $z$ are complex numbers with $|x|=|y| =|z|= 1$, $x + y + z = 1$ and $xyz = 1$, find $|(x + 2)(y + 2)(z + 2)|$. [b]p8.[/b] If $f(x)$ is a polynomial of degree $2008$ such that $f(m) = \frac{1}{m}$ for $m = 1, 2, ..., 2009$, find $f(2010)$. [b]p9.[/b] A drunkard is randomly walking through a city when he stumbles upon a $2 \times 2$ sliding tile puzzle. The puzzle consists of a $2 \times 2$ grid filled with a blank square, as well as $3$ square tiles, labeled $1$, $2$, and $3$. During each turn you may fill the empty square by sliding one of the adjacent tiles into it. The following image shows the puzzle's correct state, as well as two possible moves you can make: [img]https://cdn.artofproblemsolving.com/attachments/c/6/7ddd9305885523deeee2a530dc90505875d1cc.png[/img] Assuming that the puzzle is initially in an incorrect (but solvable) state, and that the drunkard will make completely random moves to try and solve it, how many moves is he expected to make before he restores the puzzle to its correct state? [b]p10.[/b] How many polynomials $p(x)$ exist such that the coeffients of $p(x)$ are a rearrangement of $\{0, 1, 2, .., deg \, p(x)\}$ and all of the roots of $p(x)$ are rational? (Note that the leading coefficient of $p(x)$ must be nonzero.) PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2010 China Western Mathematical Olympiad, 5

Let $k$ be an integer and $k > 1$. Define a sequence $\{a_n\}$ as follows: $a_0 = 0$, $a_1 = 1$, and $a_{n+1} = ka_n + a_{n-1}$ for $n = 1,2,...$. Determine, with proof, all possible $k$ for which there exist non-negative integers $l,m (l \not= m)$ and positive integers $p,q$ such that $a_l + ka_p = a_m + ka_q$.

1965 Miklós Schweitzer, 2

Let $ R$ be a finite commutative ring. Prove that $ R$ has a multiplicative identity element $ (1)$ if and only if the annihilator of $ R$ is $ 0$ (that is, $ aR\equal{}0, \;a\in R $ imply $ a\equal{}0$).

2022 BMT, 9

Tags: fun , algebra
We define a sequence $x_1 = \sqrt{3}, x_2 =-1, x_3 =2 - \sqrt{3},$ and for all $n \geq 4$ $$(x_n + x_{n-3})(1 - x^2_{n-1}x^2_{n-2}) = 2x_{n-1}(1 + x^2_{n-2}).$$ Suppose $m$ is the smallest positive integer for which $x_m$ is undefined. Compute $m.$

2011 Estonia Team Selection Test, 4

Let $a,b,c$ be positive real numbers such that $2a^2 +b^2=9c^2$.Prove that $\displaystyle \frac{2c}{a}+\frac cb \ge\sqrt 3$.