Found problems: 15925
V Soros Olympiad 1998 - 99 (Russia), grade7
[b]p1.[/b] Ivan Ivanovich came to the store with $20$ rubles. The store sold brooms for $1$ ruble. $17$ kopecks and basins for $1$ rub. $66$ kopecks (there are no other products left in the store). How many brooms and how many basins does he need to buy in order to spend as much money as possible? (Note: $1$ ruble = $100$ kopecks)
[b]p2.[/b] On the road from city A to city B there are kilometer posts. On each pillar, on one side, the distance to city A is written, and on the other, to B. In the morning, a tourist passed by a pillar on which one number was twice the size of the other. After walking another $10$ km, the tourist saw a post on which the numbers differed exactly three times. What is the distance from A to B? List all possibilities.
[b]p3.[/b] On New Year's Eve, geraniums, crocuses and cacti stood in a row (from left to right) on the windowsill. Every morning, Masha, wiping off the dust, swaps the places of the flower on the right and the flower in the center. During the day, Tanya, while watering flowers, swaps places between the one in the center and the one on the left. In what order will the flowers be in 365 days on the next New Year's Eve?
[b]p4.[/b] What is the smallest number of digits that must be written in a row so that by crossing out some digits you can get any three-digit natural number from $100$ to $999$?
[b]p5.[/b] An ordinary irreducible fraction was written on the board, the numerator and denominator of which were positive integers. The numerator was added to its denominator and a new fraction was obtained. The denominator was added to the numerator of the new fraction to form a third fraction. When the numerator was added to the denominator of the third fraction, the result was $13/23$. What fraction was written on the board?
[b]p6.[/b] The number $x$ is such that $15\%$ of it and $33\%$ of it are positive integers. What is the smallest number $x$ (not necessarily an integer!) with this property?
[b]p7.[/b] A radio-controlled toy leaves a certain point. It moves in a straight line, and on command can turn left exactly $17^o$ (relative to the previous direction of movement). What is the smallest number of commands required for the toy to pass through the starting point again?
[b]p8.[/b] The square is divided by straight lines into $25$ rectangles (fig. 1). The areas of some of them are indicated in the figure (not to scale). Find the area of the rectangle marked with a question mark.
[img]https://cdn.artofproblemsolving.com/attachments/0/9/591c93421067123d50382744f9d28357acf83a.png[/img]
[b]p9.[/b] Petya multiplied all natural numbers from $1$ to his age inclusive. The result is a number
$$8 \,\, 841 \,\,761993 \,\,739 \,\,701954 \,\,543 \,\,616 \,\,000 \,\,000.$$ How old is Petya?
[b]p10.[/b] There are $100$ integers written in a line, and the sum of any three in a row is equal to $10$ or $11$. The first number is equal to one. What could the last number be? List all possibilities.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]
2023 LMT Fall, 2
For how many nonnegative integer values of $k$ does the equation $7x^2 +kx +11 = 0$ have no real solutions?
2024 pOMA, 5
Prove that there do not exist positive integers $a,b,c$ such that the polynomial
\[
P(x) = x^3 - 2^ax^2 + 3^bx - 6^c
\]
has three integer roots.
2018 Iran Team Selection Test, 2
Find the maximum possible value of $k$ for which there exist distinct reals $x_1,x_2,\ldots ,x_k $ greater than $1$ such that for all $1 \leq i, j \leq k$,
$$x_i^{\lfloor x_j \rfloor }= x_j^{\lfloor x_i\rfloor}.$$
[i]Proposed by Morteza Saghafian[/i]
1988 Greece National Olympiad, 1
Given $x,y,a\in \mathbb{R}$ , $x+y=2a-4 $ and $xy=a^2-3a+5$. What is the minimum value of $x^2+y^2$?
1966 IMO Shortlist, 35
Let $ax^{3}+bx^{2}+cx+d$ be a polynomial with integer coefficients $a,$ $b,$ $c,$ $d$ such that $ad$ is an odd number and $bc$ is an even number. Prove that (at least) one root of the polynomial is irrational.
2020 Latvia Baltic Way TST, 1
Prove that for positive reals $a,b,c$ satisfying $a+b+c=3$ the following inequality holds:
$$ \frac{a}{1+2b^3}+\frac{b}{1+2c^3}+\frac{c}{1+2a^3} \ge 1 $$
1997 Tournament Of Towns, (551) 1
The sequence $x_1,x_2, ...$ is defined by the following equations:
$$x_1=19, \ \ x_2=97, \ \ x_{n+2} =x_n - \frac{1}{x_{n+1}}$$
for $n \ge 1$. Prove that there exists a positive integer $k$ such that $x_k=0$ and find $k$.
(A Berzinsh)
2023 CMIMC Team, 2
Real numbers $x$ and $y$ satisfy
\begin{align*}
x^2 + y^2 &= 2023 \\
(x-2)(y-2) &= 3.
\end{align*}
Find the largest possible value of $|x-y|$.
[i]Proposed by Howard Halim[/i]
2012 Kosovo National Mathematical Olympiad, 4
Find the set of solutions to the equation
$\log_{\lfloor x\rfloor}(x^2-1)=2$
2010 Contests, 4
Let $p$ be a positive integer, $p>1.$ Find the number of $m\times n$ matrices with entries in the set $\left\{ 1,2,\dots,p\right\} $ and such that the sum of elements on each row and each column is not divisible by $p.$
2006 Mathematics for Its Sake, 3
Let be two complex numbers $ a,b $ chosen such that $ |a+b|\ge 2 $ and $ |a+b|\ge 1+|ab|. $ Prove that
$$ \left| a^{n+1} +b^{n+1} \right|\ge \left| a^{n} +b^{n} \right| , $$
for any natural number $ n. $
[i]Alin Pop[/i]
2012 Denmark MO - Mohr Contest, 3
Georg is putting his $250$ stamps in a new album. On the first page he places one stamp and then on every page just as many or twice as many stamps as on the preceding page. In this way he ends up precisely having put all $250$ stamps in the album. How few pages are sufficient for him?
2019 Polish Junior MO Second Round, 1.
Let $x$, $y$ be real numbers, such that $x^2 + x \leq y$. Prove that $y^2 + y \geq x$.
VII Soros Olympiad 2000 - 01, 9.5
For all valid values of $a$ and $b$, solve the equation
$$\frac{x^3}{(x-a) (x-b)} +\frac{a^3}{(a-b) (a-x)} + \frac{b^3}{ (b-x) (b-a)}= x^2 + a + b$$
MOAA Individual Speed General Rounds, 2019 Speed
[b]p1.[/b] What is $20\times 19 + 20 \div (2 - 7)$?
[b]p2.[/b] Will has three spinners. The first has three equally sized sections numbered $1$, $2$, $3$; the second has four equally sized sections numbered $1$, $2$, $3$, $4$; and the third has five equally sized sections numbered $1$, $2$, $3$, $4$, $5$. When Will spins all three spinners, the probability that the same number appears on all three spinners is $p$. Compute $\frac{1}{p}$.
[b]p3.[/b] Three girls and five boys are seated randomly in a row of eight desks. Let $p$ be the probability that the students at the ends of the row are both boys. If $p$ can be expressed in the form $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute $m + n$.
[b]p4.[/b] Jaron either hits a home run or strikes out every time he bats. Last week, his batting average was $.300$. (Jaron's batting average is the number of home runs he has hit divided by the number of times he has batted.) After hitting $10$ home runs and striking out zero times in the last week, Jaron has now raised his batting average to $.310$. How many home runs has Jaron now hit?
[b]p5.[/b] Suppose that the sum $$\frac{1}{1 \cdot 4} +\frac{1}{4 \cdot 7}+ ...+\frac{1}{97 \cdot 100}$$ is expressible as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m + n$.
[b]p6.[/b] Let $ABCD$ be a unit square with center $O$, and $\vartriangle OEF$ be an equilateral triangle with center $A$. Suppose that $M$ is the area of the region inside the square but outside the triangle and $N$ is the area of the region inside the triangle but outside the square, and let $x = |M -N|$ be the positive difference between $M$ and $N$. If $$x =\frac1 8(p -\sqrt{q})$$ for positive integers $p$ and $q$, find $p + q$.
[b]p7.[/b] Find the number of seven-digit numbers such that the sum of any two consecutive digits is divisible by $3$. For example, the number $1212121$ satisfies this property.
[b]p8.[/b] There is a unique positive integer $x$ such that $x^x$ has $703$ positive factors. What is $x$?
[b]p9.[/b] Let $x$ be the number of digits in $2^{2019}$ and let $y$ be the number of digits in $5^{2019}$. Compute $x + y$.
[b]p10.[/b] Let $ABC$ be an isosceles triangle with $AB = AC = 13$ and $BC = 10$. Consider the set of all points $D$ in three-dimensional space such that $BCD$ is an equilateral triangle. This set of points forms a circle $\omega$. Let $E$ and $F$ be points on $\omega$ such that $AE$ and $AF$ are tangent to $\omega$. If $EF^2$ can be expressed in the form $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers, determine $m + n$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1977 IMO Shortlist, 11
Let $n$ be an integer greater than $1$. Define
\[x_1 = n, y_1 = 1, x_{i+1} =\left[ \frac{x_i+y_i}{2}\right] , y_{i+1} = \left[ \frac{n}{x_{i+1}}\right], \qquad \text{for }i = 1, 2, \ldots\ ,\]
where $[z]$ denotes the largest integer less than or equal to $z$. Prove that
\[ \min \{x_1, x_2, \ldots, x_n \} =[ \sqrt n ]\]
1966 Leningrad Math Olympiad, grade 8
[b]8.1 / 7.4[/b] What number needs to be put in place * so that the next the problem had a unique solution:
“There are n straight lines on the plane, intersecting at * points. Find n.” ?
[b]8.2 / 7.3[/b] Prove that for any natural number $n$ the number $ n(2n+1)(3n+1)...(1966n + 1) $ is divisible by every prime number less than $1966$.
[b]8.3 / 7.6[/b] There are $n$ points on the plane so that any triangle with vertices at these points has an area less than $1$. Prove that all these points can be enclosed in a triangle of area $4$.
[b]8.4[/b] Prove that the sum of all divisors of the number $n^2$ is odd.
[b]8.5[/b] A quadrilateral has three obtuse angles. Prove that the larger of its two diagonals emerges from the vertex of an acute angle.
[b]8.6[/b] Numbers $x_1, x_2, . . . $ are constructed according to the following rule: $$x_1 = 2, x_2 = (x^5_1 + 1)/5x_1, x_3 = (x^5_2 + 1)/5x_2, ...$$ Prove that no matter how much we continued this construction, all the resulting numbers will be no less $1/5$ and no more than $2$.
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988082_1966_leningrad_math_olympiad]here[/url].
2011 German National Olympiad, 6
Let $p>2$ be a prime. Define a sequence $(Q_{n}(x))$ of polynomials such that $Q_{0}(x)=1, Q_{1}(x)=x$ and $Q_{n+1}(x) =xQ_{n}(x) + nQ_{n-1}(x)$ for $n\geq 1.$ Prove that $Q_{p}(x)-x^p $ is divisible by $p$ for all integers $x.$
2020-21 KVS IOQM India, 12
Let $A = \{m : m$ an integer and the roots of $x^2 + mx + 2020 = 0$ are positive integers $\}$
and $B= \{n : n$ an integer and the roots of $x^2 + 2020x + n = 0$ are negative integers $\}$.
Suppose $a$ is the largest element of $A$ and $b$ is the smallest element of $B$. Find the sum of digits of $a + b$.
2003 Putnam, 3
Find the minimum value of \[|\sin{x} + \cos{x} + \tan{x} + \cot{x} + \sec{x} + \csc{x}|\] for real numbers $x$.
the 13th XMO, P9
Find the maximum value of $\lambda ,$ such that for $\forall x,y\in\mathbb R_+$ satisfying $2x-y=2x^3+y^3,x^2+\lambda y^2\leqslant 1.$
2009 Princeton University Math Competition, 2
Let $p(x)$ be the polynomial with leading coefficent 1 and rational coefficents, such that \[p\left(\sqrt{3 + \sqrt{3 + \sqrt{3 + \ldots}}}\right) = 0,\] and with the least degree among all such polynomials. Find $p(5)$.
1984 Vietnam National Olympiad, 2
The sequence $(u_n)$ is defined by $u_1 = 1, u_2 = 2$ and $u_{n+1} = 3u_n - u_{n-1}$ for $n \ge 2$. Set $v_n =\sum_{k=1}^n \text{arccot }u_k$. Compute $\lim_{n\to\infty} v_n$.
2011 German National Olympiad, 2
The price for sending a packet (a rectangular cuboid) is directly proportional to the sum of its length, width, and height. Is it possible to reduce the cost of sending a packet by putting it into a cheaper packet?