This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1991 IMTS, 3

Prove that if $x,y$ and $z$ are pairwise relatively prime positive integers, and if $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$, then $x+y, x-z, y-z$ are perfect squares of integers.

2019 Kosovo National Mathematical Olympiad, 4

Tags: algebra , function
Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that: $$f(xy+f(x))=xf(y)$$ for all $x,y\in\mathbb{R}$.

2023 India IMO Training Camp, 2

Let $\mathbb R^+$ be the set of all positive real numbers. Find all functions $f:\mathbb{R}^+ \rightarrow \mathbb{R}^+$ satisfying \[f(x+y^2f(x^2))=f(xy)^2+f(x)\] for all $x,y \in \mathbb{R}^+$. [i]Proposed by Shantanu Nene[/i]

1969 IMO Shortlist, 59

$(SWE 2)$ For each $\lambda (0 < \lambda < 1$ and $\lambda = \frac{1}{n}$ for all $n = 1, 2, 3, \cdots)$, construct a continuous function $f$ such that there do not exist $x, y$ with $0 < \lambda < y = x + \lambda \le 1$ for which $f(x) = f(y).$

1990 IMO Longlists, 41

Tags: algebra
Let $n$ be an arbitrary positive integer. Calculate $S_n = \sum_{r=0}^n 2^{r-2n} \binom{2n-r}{n}.$

2008 District Olympiad, 4

Determine $ x,y,z>0$ for which $ x^3y\plus{}3<\equal{}4z, y^3z\plus{}3<\equal{}4x,z^3x\plus{}3<\equal{}4y.$

1984 All Soviet Union Mathematical Olympiad, 392

What is more $\frac{2}{201}$ or $\ln\frac{101}{100}$? (No differential calculus allowed).

2020 Moldova Team Selection Test, 10

Let $n$ be a positive integer. Positive numbers $a$, $b$, $c$ satisfy $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$. Find the greatest possible value of $$E(a,b,c)=\frac{a^{n}}{a^{2n+1}+b^{2n} \cdot c + b \cdot c^{2n}}+\frac{b^{n}}{b^{2n+1}+c^{2n} \cdot a + c \cdot a^{2n}}+\frac{c^{n}}{c^{2n+1}+a^{2n} \cdot b + a \cdot b^{2n}}$$

1977 Vietnam National Olympiad, 2

Show that there are $1977$ non-similar triangles such that the angles $A, B, C$ satisfy $\frac{\sin A + \sin B + \sin C}{\cos A +\cos B + \cos C} = \frac{12}{7}$ and $\sin A \sin B \sin C = \frac{12}{25}$.

2014 Singapore Junior Math Olympiad, 4

Find, with justification, all positive real numbers $a,b,c$ satisfying the system of equations: $$\begin{cases} a\sqrt{b}=a+c \\ b\sqrt{c}=b+a \\ c\sqrt{a}=c+b \end{cases}$$

2022 Singapore MO Open, Q5

Let $n\ge 2$ be a positive integer. For any integer $a$, let $P_a(x)$ denote the polynomial $x^n+ax$. Let $p$ be a prime number and define the set $S_a$ as the set of residues mod $p$ that $P_a(x)$ attains. That is, $$S_a=\{b\mid 0\le b\le p-1,\text{ and there is }c\text{ such that }P_a(c)\equiv b \pmod{p}\}.$$Show that the expression $\frac{1}{p-1}\sum\limits_{a=1}^{p-1}|S_a|$ is an integer. [i]Proposed by fattypiggy123[/i]

1985 Iran MO (2nd round), 2

Tags: algebra
Let $x, y$ and $z$ be three positive real numbers for which \[x^2+y^2+z^2=xy+yz+zx.\] Find the value of $\frac{\sqrt x}{\sqrt x + \sqrt y+ \sqrt z}.$

2022 Iran MO (3rd Round), 3

Prove that for natural number $n$ it's possible to find complex numbers $\omega_1,\omega_2,\cdots,\omega_n$ on the unit circle that $$\left\lvert\sum_{j=1}^{n}\omega_j\right\rvert=\left\lvert\sum_{j=1}^{n}\omega_j^2\right\rvert=n-1$$ iff $n=2$ occurs.

2016 CMIMC, 3

Tags: algebra
Let $\ell$ be a real number satisfying the equation $\tfrac{(1+\ell)^2}{1+\ell^2}=\tfrac{13}{37}$. Then \[\frac{(1+\ell)^3}{1+\ell^3}=\frac mn,\] where $m$ and $n$ are positive coprime integers. Find $m+n$.

2019 India PRMO, 2

If $x=\sqrt2+\sqrt3+\sqrt6$ is a root of $x^4+ax^3+bx^2+cx+d=0$ where $a,b,c,d$ are integers, what is the value of $|a+b+c+d|$?

2010 Germany Team Selection Test, 1

Tags: algebra
A sequence $\left(a_n\right)$ with $a_1 = 1$ satisfies the following recursion: In the decimal expansion of $a_n$ (without trailing zeros) let $k$ be the smallest digest then $a_{n+1} = a_n + 2^k.$ How many digits does $a_{9 \cdot 10^{2010}}$ have in the decimal expansion?

2007 Princeton University Math Competition, 9

Find all values of $a$ such that $x^6 - 6x^5 + 12x^4 + ax^3 + 12x^2 - 6x +1$ is nonnegative for all real $x$.

2002 China Team Selection Test, 2

For any two rational numbers $ p$ and $ q$ in the interval $ (0,1)$ and function $ f$, there is always $ \displaystyle f \left( \frac{p\plus{}q}{2} \right) \leq \frac{f(p) \plus{} f(q)}{2}$. Then prove that for any rational numbers $ \lambda, x_1, x_2 \in (0,1)$, there is always: \[ f( \lambda x_1 \plus{} (1\minus{}\lambda) x_2 ) \leq \lambda f(x_i) \plus{} (1\minus{}\lambda) f(x_2)\]

1968 Yugoslav Team Selection Test, Problem 4

If a polynomial of degree n has integer values when evaluated in each of $k,k+1,\ldots,k+n$, where $k$ is an integer, prove that the polynomial has integer values when evaluated at each integer $x$.

2017 China Team Selection Test, 6

Let $M$ be a subset of $\mathbb{R}$ such that the following conditions are satisfied: a) For any $x \in M, n \in \mathbb{Z}$, one has that $x+n \in \mathbb{M}$. b) For any $x \in M$, one has that $-x \in M$. c) Both $M$ and $\mathbb{R}$ \ $M$ contain an interval of length larger than $0$. For any real $x$, let $M(x) = \{ n \in \mathbb{Z}^{+} | nx \in M \}$. Show that if $\alpha,\beta$ are reals such that $M(\alpha) = M(\beta)$, then we must have one of $\alpha + \beta$ and $\alpha - \beta$ to be rational.

2024 Junior Balkan Team Selection Tests - Romania, P1

Let $n\geqslant 3$ be an integer and $a_1,a_2,\ldots,a_n$ be pairwise distinct positive real numbers with the property that there exists a permutation $b_1,b_2,\ldots,b_n$ of these numbers such that\[\frac{a_1}{b_1}=\frac{a_2}{b_2}=\cdots=\frac{a_{n-1}}{b_{n-1}}\neq 1.\]Prove that there exist $a,b>0$ such that $\{a_1,a_2,\ldots,a_n\}=\{ab,ab^2,\ldots,ab^n\}.$ [i]Cristi Săvescu[/i]

2021 Caucasus Mathematical Olympiad, 1

Tags: algebra
Let $a$, $b$, $c$ be real numbers such that $a^2+b=c^2$, $b^2+c=a^2$, $c^2+a=b^2$. Find all possible values of $abc$.

2009 China Team Selection Test, 2

Find all the pairs of integers $ (a,b)$ satisfying $ ab(a \minus{} b)\not \equal{} 0$ such that there exists a subset $ Z_{0}$ of set of integers $ Z,$ for any integer $ n$, exactly one among three integers $ n,n \plus{} a,n \plus{} b$ belongs to $ Z_{0}$.

2002 Iran MO (3rd Round), 16

For positive $a,b,c$, \[a^{2}+b^{2}+c^{2}+abc=4\] Prove $a+b+c \leq3$

2019 JBMO Shortlist, A2

Let $a, b, c $ be positive real numbers such that $abc = \frac {2} {3}. $ Prove that: $$\frac {ab}{a + b} + \frac {bc} {b + c} + \frac {ca} {c + a} \geqslant \frac {a+b+c} {a^3+b ^ 3 + c ^ 3}.$$