Found problems: 15925
DMM Individual Rounds, 2013 (-14)
[b]p1.[/b] $p, q, r$ are prime numbers such that $p^q + 1 = r$. Find $p + q + r$.
[b]p2.[/b] $2014$ apples are distributed among a number of children such that each child gets a different number of apples. Every child gets at least one apple. What is the maximum possible number of children who receive apples?
[b]p3.[/b] Cathy has a jar containing jelly beans. At the beginning of each minute he takes jelly beans out of the jar. At the $n$-th minute, if $n$ is odd, he takes out $5$ jellies. If n is even he takes out $n$ jellies. After the $46$th minute there are only $4$ jellies in the jar. How many jellies were in the jar in the beginning?
[b]p4.[/b] David is traveling to Budapest from Paris without a cellphone and he needs to use a public payphone. He only has two coins with him. There are three pay-phones - one that never works, one that works half of the time, and one that always works. The first phone that David tries does not work. Assuming that he does not use the same phone again, what is the probability that the second phone that he uses will work?
[b]p5.[/b] Let $a, b, c, d$ be positive real numbers such that
$$a^2 + b^2 = 1$$
$$c^2 + d^2 = 1;$$
$$ad - bc =\frac17$$
Find $ac + bd$.
[b]p6.[/b] Three circles $C_A,C_B,C_C$ of radius $1$ are centered at points $A,B,C$ such that $A$ lies on $C_B$ and $C_C$, $B$ lies on $C_C$ and $C_A$, and $C$ lies on $C_A$ and $C_B$. Find the area of the region where $C_A$, $C_B$, and $C_C$ all overlap.
[b]p7.[/b] Two distinct numbers $a$ and $b$ are randomly and uniformly chosen from the set $\{3, 8, 16, 18, 24\}$. What is the probability that there exist integers $c$ and $d$ such that $ac + bd = 6$?
[b]p8.[/b] Let $S$ be the set of integers $1 \le N \le 2^{20}$ such that $N = 2^i + 2^j$ where $i, j$ are distinct integers. What is the probability that a randomly chosen element of $S$ will be divisible by $9$?
[b]p9.[/b] Given a two-pan balance, what is the minimum number of weights you must have to weigh any object that weighs an integer number of kilograms not exceeding $100$ kilograms?
[b]p10.[/b] Alex, Michael and Will write $2$-digit perfect squares $A,M,W$ on the board. They notice that the $6$-digit number $10000A + 100M +W$ is also a perfect square. Given that $A < W$, find the square root of the $6$-digit number.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2001 All-Russian Olympiad Regional Round, 11.2
The monic quadratic trinomial $f(x)$ has $2$ different roots. Could it be that the equation $f(f(x)) = 0$ has $3$ different root, and the equation $f(f(f(x))) = 0$ has $7$ different roots?
2017 Azerbaijan EGMO TST, 3
The degree of the polynomial $P(x)$ is $2017.$ Prove that the number of distinct real roots of the equation $P(P(x)) = 0$ is not less than the number of distinct real roots of the equation $P(x) = 0.$
2009 IMC, 3
Let $A,B\in \mathcal{M}_n(\mathbb{C})$ be two $n \times n$ matrices such that
\[ A^2B+BA^2=2ABA \]
Prove there exists $k\in \mathbb{N}$ such that
\[ (AB-BA)^k=\mathbf{0}_n\]
Here $\mathbf{0}_n$ is the null matrix of order $n$.
2021 IOM, 3
Let $a_1,a_2,\ldots,a_n$ ($n\geq 2$) be nonnegative real numbers whose sum is $\frac{n}{2}$. For every $i=1,\ldots,n$ define
$$b_i=a_i+a_ia_{i+1}+a_ia_{i+1}a_{i+2}+\cdots+ a_ia_{i+1}\cdots a_{i+n-2}+2a_ia_{i+1}\cdots a_{i+n-1}$$
where $a_{j+n}=a_j$ for every $j$. Prove that $b_i\geq 1$ holds for at least one index $i$.
2007 Germany Team Selection Test, 2
Determine all functions $ f: \mathbb{R}^\plus{} \mapsto \mathbb{R}^\plus{}$ which satisfy \[ f \left(\frac {f(x)}{yf(x) \plus{} 1}\right) \equal{} \frac {x}{xf(y)\plus{}1} \quad \forall x,y > 0\]
2006 CentroAmerican, 3
For every natural number $n$ we define \[f(n)=\left\lfloor n+\sqrt{n}+\frac{1}{2}\right\rfloor\] Show that for every integer $k \geq 1$ the equation \[f(f(n))-f(n)=k\] has exactly $2k-1$ solutions.
1998 Canada National Olympiad, 2
Find all real numbers $x$ such that: \[ x = \sqrt{ x - \frac{1}{x} } + \sqrt{ 1 - \frac{1}{x} } \]
2001 Kazakhstan National Olympiad, 3
For positive numbers $ x_1, x_2, \ldots, x_n $ $ (n \geq 1) $ the following equality holds $$ \frac {1} {{1 + x_1}} + \frac {1} {{1 + x_2}} + \ldots + \frac {1} {{1 + x_n}} = 1. $$ Prove that $ x_1 \cdot x_2 \cdot \ldots \cdot x_n \geq (n-1) ^ n. $
2025 Euler Olympiad, Round 2, 4
Find all functions $f : \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{2}]$ such that for all $x, y \in \mathbb{Q}[\sqrt{2}]$,
$$
f(xy) = f(x)f(y) \quad \text{and} \quad f(x + y) = f(x) + f(y),
$$
where $\mathbb{Q}[\sqrt{2}] = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \}$.
[I]Proposed by Stijn Cambie, Belgium[/i]
1998 Brazil Team Selection Test, Problem 4
(a) Show that, for each positive integer $n$, the number of monic polynomials of degree $n$ with integer coefficients having all its roots on the unit circle is finite.
(b) Let $P(x)$ be a monic polynomial with integer coefficients having all its roots on the unit circle. Show that there exists a positive integer $m$ such that $y^m=1$ for each root $y$ of $P(x)$.
2023 Euler Olympiad, Round 1, 6
Given a rebus:
$$AB + BC + CA = XY + YZ + ZX = KL + LM + MK $$
where different letters correspond to different numbers, and same letters correspond to the same numbers. Determine the value of $ AXK + BYL + CZM $.
[i]Proposed by Giorgi Arabidze[/i]
2011 Vietnam National Olympiad, 3
Let $n\in\mathbb N$ and define $P(x,y)=x^n+xy+y^n.$
Show that we cannot obtain two non-constant polynomials $G(x,y)$ and $H(x,y)$ with real coefficients such that
$P(x,y)=G(x,y)\cdot H(x,y).$
2014 Dutch BxMO/EGMO TST, 2
Find all functions $f:\mathbb{R}\backslash\{0\}\rightarrow\mathbb{R}$ for which $xf(xy) + f(-y) = xf(x)$ for all non-zero real numbers $x, y$.
Revenge EL(S)MO 2024, 3
Fix a positive integer $n$. Define sequences $a, b, c \in \mathbb{Q}^{n+1}$ by $(a_0, b_0, c_0) = (0, 0, 1)$ and
\[
a_k = (n-k+1) \cdot c_{k-1}, \quad
b_k = \binom nk - c_k - a_k, \quad \text{and} \quad
c_k = \frac{b_{k-1}}{k}
\]
for each integer $1 \leq k \leq n$.
$ $ $ $ $ $ $ $ $ $ Determine for which $n$ it happens that $a, b, c \in \mathbb{Z}^{n+1}$.
Proposed by [i]Jonathan Du[/i]
2004 Bosnia and Herzegovina Junior BMO TST, 3
Let $a, b, c, d$ be reals such that $\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}= 7$ and $\frac{a}{c}+\frac{b}{d}+\frac{c}{a}+\frac{d}{b}= 12$.
Find the value of $w =\frac{a}{b}+\frac{c}{d}$
.
2012 AMC 10, 19
Paula the painter and her two helpers each paint at constant, but different, rates. They always start at $\text{8:00 AM}$, and all three always take the same amount of time to eat lunch. On Monday the three of them painted $50\%$ of a house, quitting at $\text{4:00 PM}$. On Tuesday, when Paula wasn't there, the two helpers painted only $24\%$ of the house and quit at $\text{2:12 PM}$. On Wednesday Paula worked by herself and finished the house by working until $\text{7:12 PM}$. How long, in minutes, was each day's lunch break?
$ \textbf{(A)}\ 30
\qquad\textbf{(B)}\ 36
\qquad\textbf{(C)}\ 42
\qquad\textbf{(D)}\ 48
\qquad\textbf{(E)}\ 60
$
1985 Brazil National Olympiad, 1
$a, b, c, d$ are integers with $ad \ne bc$. Show that $1/((ax+b)(cx+d))$ can be written in the form $ r/(ax+b) + s/(cx+d)$. Find the sum $1/1\cdot 4 + 1/4\cdot 7 + 1/7\cdot 10 + ... + 1/2998 \cdot 3001$.
2008 Tuymaada Olympiad, 5
A loader has a waggon and a little cart. The waggon can carry up to 1000 kg, and the cart can carry only up to 1 kg. A finite number of sacks with sand lie in a storehouse. It is known that their total weight is more than 1001 kg, while each sack weighs not more than 1 kg. What maximum weight of sand can the loader carry in the waggon and the cart, regardless of particular weights of sacks?
[i]Author: M.Ivanov, D.Rostovsky, V.Frank[/i]
2019 MMATHS, Mixer Round
[b]p1.[/b] An ant starts at the top vertex of a triangular pyramid (tetrahedron). Each day, the ant randomly chooses an adjacent vertex to move to. What is the probability that it is back at the top vertex after three days?
[b]p2.[/b] A square “rolls” inside a circle of area $\pi$ in the obvious way. That is, when the square has one corner on the circumference of the circle, it is rotated clockwise around that corner until a new corner touches the circumference, then it is rotated around that corner, and so on. The square goes all the way around the circle and returns to its starting position after rotating exactly $720^o$. What is the area of the square?
[b]p3.[/b] How many ways are there to fill a $3\times 3$ grid with the integers $1$ through $9$ such that every row is increasing left-to-right and every column is increasing top-to-bottom?
[b]p4.[/b] Noah has an old-style M&M machine. Each time he puts a coin into the machine, he is equally likely to get $1$ M&M or $2$ M&M’s. He continues putting coins into the machine and collecting M&M’s until he has at least $6$ M&M’s. What is the probability that he actually ends up with $7$ M&M’s?
[b]p5.[/b] Erik wants to divide the integers $1$ through $6$ into nonempty sets $A$ and $B$ such that no (nonempty) sum of elements in $A$ is a multiple of $7$ and no (nonempty) sum of elements in $B$ is a multiple of $7$. How many ways can he do this? (Interchanging $A$ and $B$ counts as a different solution.)
[b]p6.[/b] A subset of $\{1, 2, 3, 4, 5, 6, 7, 8\}$ of size $3$ is called special if whenever $a$ and $b$ are in the set, the remainder when $a + b$ is divided by $8$ is not in the set. ($a$ and $b$ can be the same.) How many special subsets exist?
[b]p7.[/b] Let $F_1 = F_2 = 1$, and let $F_n = F_{n-1} + F_{n-2}$ for all $n \ge 3$. For each positive integer $n$, let $g(n)$ be the minimum possible value of $$|a_1F_1 + a_2F_2 + ...+ a_nF_n|,$$ where each $a_i$ is either $1$ or $-1$. Find $g(1) + g(2) +...+ g(100)$.
[b]p8.[/b] Find the smallest positive integer $n$ with base-$10$ representation $\overline{1a_1a_2... a_k}$ such that $3n = \overline{a_1a_2 a_k1}$.
[b]p9.[/b] How many ways are there to tile a $4 \times 6$ grid with $L$-shaped triominoes? (A triomino consists of three connected $1\times 1$ squares not all in a line.)
[b]p10.[/b] Three friends want to share five (identical) muffins so that each friend ends up with the same total amount of muffin. Nobody likes small pieces of muffin, so the friends cut up and distribute the muffins in such a way that they maximize the size of the smallest muffin piece. What is the size of this smallest piece?
[u]Numerical tiebreaker problems:[/u]
[b]p11.[/b] $S$ is a set of positive integers with the following properties:
(a) There are exactly 3 positive integers missing from $S$.
(b) If $a$ and $b$ are elements of $S$, then $a + b$ is an element of $S$. (We allow $a$ and $b$ to be the same.)
How many possibilities are there for the set $S$?
[b]p12.[/b] In the trapezoid $ABCD$, both $\angle B$ and $\angle C$ are right angles, and all four sides of the trapezoid are tangent to the same circle. If $\overline{AB} = 13$ and $\overline{CD} = 33$, find the area of $ABCD$.
[b]p13.[/b] Alice wishes to walk from the point $(0, 0)$ to the point $(6, 4)$ in increments of $(1, 0)$ and $(0, 1)$, and Bob wishes to walk from the point $(0, 1)$ to the point $(6, 5)$ in increments of $(1, 0)$ and $(0,1)$. How many ways are there for Alice and Bob to get to their destinations if their paths never pass through the same point (even at different times)?
[b]p14.[/b] The continuous function $f(x)$ satisfies $9f(x + y) = f(x)f(y)$ for all real numbers $x$ and $y$. If $f(1) = 3$, what is $f(-3)$?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2013 All-Russian Olympiad, 2
Peter and Basil together thought of ten quadratic trinomials. Then, Basil began calling consecutive natural numbers starting with some natural number. After each called number, Peter chose one of the ten polynomials at random and plugged in the called number. The results were recorded on the board. They eventually form a sequence. After they finished, their sequence was arithmetic. What is the greatest number of numbers that Basil could have called out?
2025 JBMO TST - Turkey, 3
Find all positive real solutions $(a, b, c)$ to the following system:
$$
\begin{aligned}
a^2 + \frac{b}{a} &= 8, \\
ab + c^2 &= 18, \\
3a + b + c &= 9\sqrt{3}.
\end{aligned}
$$
MathLinks Contest 1st, 2
Let $m$ be the greatest number such that for any set of complex numbers having the sum of all modulus of all the elements $1$, there exists a subset having the modulus of the sum of the elements in the subset greater than $m$. Prove that $$\frac14 \le m \le \frac12.$$
(Optional Task for 3p) Find a smaller value for the RHS.
2010 Saudi Arabia BMO TST, 4
Let $f : N \to [0, \infty)$ be a function satisfying the following conditions:
a) $f(4)=2$
b) $\frac{1}{f( 0 ) + f( 1)} + \frac{1}{f( 1 ) + f( 2 )} + ... + \frac{1}{f (n ) + f(n + 1) }= f ( n + 1)$ for all integers $n \ge 0$.
Find $f(n)$ in closed form.
1987 Iran MO (2nd round), 2
Find all continuous functions $f: \mathbb R \to \mathbb R$ such that
\[f(x^2-y^2)=f(x)^2 + f(y)^2, \quad \forall x,y \in \mathbb R.\]