This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2023 NMTC Junior, P5

$a,b,c$ are positive reals satisfying $\frac{2}{5} \leq c \leq \min{a,b}$ ; $ac \geq \frac{4}{15}$ and $bc \geq \frac{1}{5}$ Find the maximum value of $\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)$.

Oliforum Contest V 2017, 8

Tags: algebra , sum , product
Fix $a_1, . . . , a_n \in (0, 1)$ and define $$f(I) = \prod_{i \in I} a_i \cdot \prod_{j \notin I} (1 - a_j)$$ for each $I \subseteq \{1, . . . , n\}$. Assuming that $$\sum_{I\subseteq \{1,...,n\}, |I| odd} {f(I)} = \frac12,$$ show that at least one $a_i$ has to be equal to $\frac12$. (Paolo Leonetti)

2001 District Olympiad, 1

Let $A\in \mathcal{M}_2(\mathbb{R})$ such that $\det(A)=d\neq 0$ and $\det(A+dA^*)=0$. Prove that $\det(A-dA^*)=4$. [i]Daniel Jinga[/i]

India EGMO 2024 TST, 2

Tags: summation , floor , algebra
Given that $a_1, a_2, \dots, a_{10}$ are positive real numbers, determine the smallest possible value of \[\sum \limits_{i = 1}^{10} \left\lfloor \frac{7a_i}{a_i+a_{i+1}}\right\rfloor\] where we define $a_{11} = a_1$. [i]Proposed by Sutanay Bhattacharya[/i]

2006 IberoAmerican Olympiad For University Students, 7

Consider the multiplicative group $A=\{z\in\mathbb{C}|z^{2006^k}=1, 0<k\in\mathbb{Z}\}$ of all the roots of unity of degree $2006^k$ for all positive integers $k$. Find the number of homomorphisms $f:A\to A$ that satisfy $f(f(x))=f(x)$ for all elements $x\in A$.

2001 Italy TST, 2

Let $0\le a\le b\le c$ be real numbers. Prove that \[(a+3b)(b+4c)(c+2a)\ge 60abc \]

2023 Austrian MO National Competition, 4

Tags: algebra
The number $2023$ is written $2023$ times on a blackboard. On one move, you can choose two numbers $x, y$ on the blackboard, delete them and write $\frac{x+y} {4}$ instead. Prove that when one number remains, it is greater than $1$.

2012 India IMO Training Camp, 2

Let $P(z)=a_nz^n+a_{n-1}z^{n-1}+\ldots+a_mz^m$ be a polynomial with complex coefficients such that $a_m\neq 0, a_n\neq 0$ and $n>m$. Prove that \[\text{max}_{|z|=1}\{|P(z)|\}\ge\sqrt{2|a_ma_n|+\sum_{k=m}^{n} |a_k|^2}\]

1953 Poland - Second Round, 2

Tags: algebra , sum
The board was placed $$ \begin{array}{rcl}<br /> 1 & = & 1 \\<br /> 2 + 3 + 4 & = & 1 + 8 \\<br /> 5 + 6 + 7 + 8 + 9 & = & 8 + 27\\<br /> 10 + 11 + 12 + 13 + 14 + 15 + 16 & = & 27 + 64\\<br /> & \ldots &<br /> \end{array}$$ Write such a formula for the $ n $-th row of the array that, with the substitutions $ n = 1, 2, 3, 4 $, would give the above four lines of the array and would be true for every natural $ n $.

2011 IMO Shortlist, 6

Let $f : \mathbb R \to \mathbb R$ be a real-valued function defined on the set of real numbers that satisfies \[f(x + y) \leq yf(x) + f(f(x))\] for all real numbers $x$ and $y$. Prove that $f(x) = 0$ for all $x \leq 0$. [i]Proposed by Igor Voronovich, Belarus[/i]

2004 Nicolae Coculescu, 1

Solve in the real numbers the system: $$ \left\{ \begin{matrix} x^2+7^x=y^3\\x^2+3=2^y \end{matrix} \right. $$ [i]Eduard Buzdugan[/i]

1990 Austrian-Polish Competition, 6

$p(x)$ is a polynomial with integer coefficients. The sequence of integers $a_1, a_2, ... , a_n$ (where $n > 2$) satisfies $a_2 = p(a_1), a_3 = p(a_2), ... , a_n = p(a_{n-1}), a_1 = p(a_n)$. Show that $a_1 = a_3$.

1996 Vietnam Team Selection Test, 3

Tags: algebra
Find all reals $a$ such that the sequence $\{x(n)\}$, $n=0,1,2, \ldots$ that satisfy: $x(0)=1996$ and $x_{n+1} = \frac{a}{1+x(n)^2}$ for any natural number $n$ has a limit as n goes to infinity.

2017 LMT, Team Round

[b]p1.[/b] Suppose that $20\%$ of a number is $17$. Find $20\%$ of $17\%$ of the number. [b]p2.[/b] Let $A, B, C, D$ represent the numbers $1$ through $4$ in some order, with $A \ne 1$. Find the maximum possible value of $\frac{\log_A B}{C +D}$. Here, $\log_A B$ is the unique real number $X$ such that $A^X = B$. [b]p3. [/b]There are six points in a plane, no four of which are collinear. A line is formed connecting every pair of points. Find the smallest possible number of distinct lines formed. [b]p4.[/b] Let $a,b,c$ be real numbers which satisfy $$\frac{2017}{a}= a(b +c), \frac{2017}{b}= b(a +c), \frac{2017}{c}= c(a +b).$$ Find the sum of all possible values of $abc$. [b]p5.[/b] Let $a$ and $b$ be complex numbers such that $ab + a +b = (a +b +1)(a +b +3)$. Find all possible values of $\frac{a+1}{b+1}$. [b]p6.[/b] Let $\vartriangle ABC$ be a triangle. Let $X,Y,Z$ be points on lines $BC$, $CA$, and $AB$, respectively, such that $X$ lies on segment $BC$, $B$ lies on segment $AY$ , and $C$ lies on segment $AZ$. Suppose that the circumcircle of $\vartriangle XYZ$ is tangent to lines $AB$, $BC$, and $CA$ with center $I_A$. If $AB = 20$ and $I_AC = AC = 17$ then compute the length of segment $BC$. [b]p7. [/b]An ant makes $4034$ moves on a coordinate plane, beginning at the point $(0, 0)$ and ending at $(2017, 2017)$. Each move consists of moving one unit in a direction parallel to one of the axes. Suppose that the ant stays within the region $|x - y| \le 2$. Let N be the number of paths the ant can take. Find the remainder when $N$ is divided by $1000$. [b]p8.[/b] A $10$ digit positive integer $\overline{a_9a_8a_7...a_1a_0}$ with $a_9$ nonzero is called [i]deceptive [/i] if there exist distinct indices $i > j$ such that $\overline{a_i a_j} = 37$. Find the number of deceptive positive integers. [b]p9.[/b] A circle passing through the points $(2, 0)$ and $(1, 7)$ is tangent to the $y$-axis at $(0, r )$. Find all possible values of $ r$. [b]p10.[/b] An ellipse with major and minor axes $20$ and $17$, respectively, is inscribed in a square whose diagonals coincide with the axes of the ellipse. Find the area of the square. PS. You had better use hide for answers.

2024 CMIMC Algebra and Number Theory, 3

Tags: algebra
The positive integer $8833$ has the property that $8833 = 88^2 + 33^2.$ Find the (unique) other four-digit positive integer $\overline{abcd}$ where $\overline{abcd} = (\overline{ab})^2 + (\overline{cd})^2.$ [i]Proposed by Allen Yang[/i]

1983 IMO Longlists, 16

Suppose that ${x_1, x_2, \dots , x_n}$ are positive integers for which $x_1 + x_2 + \cdots+ x_n = 2(n + 1)$. Show that there exists an integer $r$ with $0 \leq r \leq n - 1$ for which the following $n - 1$ inequalities hold: \[x_{r+1} + \cdots + x_{r+i} \leq 2i+ 1, \qquad \qquad \forall i, 1 \leq i \leq n - r; \] \[x_{r+1} + \cdots + x_n + x_1 + \cdots+ x_i \leq 2(n - r + i) + 1, \qquad \qquad \forall i, 1 \leq i \leq r - 1.\] Prove that if all the inequalities are strict, then $r$ is unique and that otherwise there are exactly two such $r.$

2003 IberoAmerican, 3

Tags: algebra , induction
Pablo copied from the blackboard the problem: [list]Consider all the sequences of $2004$ real numbers $(x_0,x_1,x_2,\dots, x_{2003})$ such that: $x_0=1, 0\le x_1\le 2x_0,0\le x_2\le 2x_1\ldots ,0\le x_{2003}\le 2x_{2002}$. From all these sequences, determine the sequence which minimizes $S=\cdots$[/list] As Pablo was copying the expression, it was erased from the board. The only thing that he could remember was that $S$ was of the form $S=\pm x_1\pm x_2\pm\cdots\pm x_{2002}+x_{2003}$. Show that, even when Pablo does not have the complete statement, he can determine the solution of the problem.

ABMC Team Rounds, 2021

[u]Round 5[/u] [b]5.1.[/b] Julia baked a pie for herself to celebrate pi day this year. If Julia bakes anyone pie on pi day, the following year on pi day she bakes a pie for herself with $1/3$ probability, she bakes her friend a pie with $1/6$ probability, and she doesn't bake anyone a pie with $1/2$ probability. However, if Julia doesn't make pie on pi day, the following year on pi day she bakes a pie for herself with $1/2$ probability, she bakes her friend a pie with $1/3$ probability, and she doesn't bake anyone a pie with $1/6$ probability. The probability that Julia bakes at least $2$ pies on pi day in the next $5$ years can be expressed as $p/q$, for relatively prime positive integers $p$ and $q$. Compute $p + q$. [b]5.2.[/b] Steven is flipping a coin but doesn't want to appear too lucky. If he ips the coin $8$ times, the probability he only gets sequences of consecutive heads or consecutive tails that are of length $4$ or less can be expressed as $p/q$, for relatively prime positive integers $p$ and $q$. Compute $p + q$. [b]5.3.[/b] Let $ABCD$ be a square with side length $3$. Further, let $E$ be a point on side$ AD$, such that $AE = 2$ and $DE = 1$, and let $F$ be the point on side $AB$ such that triangle $CEF$ is right with hypotenuse $CF$. The value $CF^2$ can be expressed as $m/n$ , where $m$ and $n$ are relatively prime positive integers. Compute $m + n$. [u]Round 6[/u] [b]6.1.[/b] Let $P$ be a point outside circle $\omega$ with center $O$. Let $A,B$ be points on circle $\omega$ such that $PB$ is a tangent to $\omega$ and $PA = AB$. Let $M$ be the midpoint of $AB$. Given $OM = 1$, $PB = 3$, the value of $AB^2$ can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$. [b]6.2.[/b] Let $a_0, a_1, a_2,...$with each term defined as $a_n = 3a_{n-1} + 5a_{n-2}$ and $a_0 = 0$, $a_1 = 1$. Find the remainder when $a_{2020}$ is divided by $360$. [b]6.3.[/b] James and Charles each randomly pick two points on distinct sides of a square, and they each connect their chosen pair of points with a line segment. The probability that the two line segments intersect can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$. [u]Round 7[/u] [b]7.1.[/b] For some positive integers $x, y$ let $g = gcd (x, y)$ and $\ell = lcm (2x, y)$: Given that the equation $xy+3g+7\ell = 168$ holds, find the largest possible value of $2x + y$. [b]7.2.[/b] Marco writes the polynomials $$f(x) = nx^4 +2x^3 +3x^2 +4x+5$$ and $$g(x) = a(x-1)^4 +b(x-1)^3 +6(x-1)^2 + d(x - 1) + e,$$ where $n, a, b, d, e$ are real numbers. He notices that $g(i) = f(i) - |i|$ for each integer $i$ satisfying $-5 \le i \le -1$. Then $n^2$ can be expressed as $p/q$ for relatively prime positive integers $p, q$. Find $p + q$. [b]7.3. [/b]Equilateral $\vartriangle ABC$ is inscribed in a circle with center $O$. Points $D$ and $E$ are chosen on minor arcs $AB$ and $BC$, respectively. Segment $\overline{CD}$ intersects $\overline{AB}$ and $\overline{AE}$ at $Y$ and $X$, respectively. Given that $\vartriangle DXE$ and $\vartriangle AXC$ have equal area, $\vartriangle AXY$ has area $ 1$, and $\vartriangle ABC$ has area $52$, find the area of $\vartriangle BXC$. [u]Round 8[/u] [b]8.[/b] Let $A$ be the number of total webpage visits our website received last month. Let $B$ be the number photos in our photo collection from ABMC onsite 2017. Let $M$ be the mean speed round score. Further, let $C$ be the number of times the letter c appears in our problem bank. Estimate $$A \cdot B + M \cdot C.$$Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input. $$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.05 |I|}, 13 - \frac{|I-X|}{0.05 |I-2X|} \right\} \right\rceil \right\}$$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2766251p24226451]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

MOAA Accuracy Rounds, 2019

[b]p1.[/b] Farmer John wants to bring some cows to a pasture with grass that grows at a constant rate. Initially, the pasture has some nonzero amount of grass and it will stop growing if there is no grass left. The pasture sustains $100$ cows for ten days. The pasture can also sustain $100$ cows for five days, and then $120$ cows for three more days. If cows eat at a constant rate, fund the maximum number of cows Farmer John can bring to the pasture so that they can be sustained indefinitely. [b]p2.[/b] Sam is learning basic arithmetic. He may place either the operation $+$ or $-$ in each of the blank spots between the numbers below: $$5\,\, \_ \,\, 8\,\, \_ \,\,9\,\, \_ \,\,7\,\,\_ \,\,2\,\,\_ \,\,3$$ In how many ways can he place the operations so the result is divisible by $3$? [b]p3.[/b] Will loves the color blue, but he despises the color red. In the $5\times 6$ rectangular grid below, how many rectangles are there containing at most one red square and with sides contained in the gridlines? [img]https://cdn.artofproblemsolving.com/attachments/1/7/7ce55bdc9e05c7c514dddc7f8194f3031b93c4.png[/img] [b]p4.[/b] Let $r_1, r_2, r_3$ be the three roots of a cubic polynomial $P(x)$. Suppose that $$\frac{P(2) + P(-2)}{P(0)}= 200.$$ If $\frac{1}{r_1r_2}+ \frac{1}{r_2r_3}+\frac{1}{r_3r_1}= \frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute $m + n$. [b]p5.[/b] Consider a rectangle $ABCD$ with $AB = 3$ and $BC = 1$. Let $O$ be the intersection of diagonals $AC$ and $BD$. Suppose that the circumcircle of $ \vartriangle ADO$ intersects line $AB$ again at $E \ne A$. Then, the length $BE$ can be written as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find $m + n$. [b]p6.[/b] Let $ABCD$ be a square with side length $100$ and $M$ be the midpoint of side $AB$. The circle with center $M$ and radius $50$ intersects the circle with center $D$ and radius $100$ at point $E$. $CE$ intersects $AB$ at $F$. If $AF = \frac{m}{n}$ for relatively prime positive integers $m$ and $n$, find $m + n$. [b]p7.[/b] How many pairs of real numbers $(x, y)$, with $0 < x, y < 1$ satisfy the property that both $3x + 5y$ and $5x + 2y$ are integers? [b]p8.[/b] Sebastian is coloring a circular spinner with $4$ congruent sections. He randomly chooses one of four colors for each of the sections. If two or more adjacent sections have the same color, he fuses them and considers them as one section. (Sections meeting at only one point are not adjacent.) Suppose that the expected number of sections in the final colored spinner is equal to $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m + n$. [b]p9.[/b] Let $ABC$ be a triangle and $D$ be a point on the extension of segment $BC$ past $C$. Let the line through $A$ perpendicular to $BC$ be $\ell$. The line through $B$ perpendicular to $AD$ and the line through $C$ perpendicular to $AD$ intersect $\ell$ at $H_1$ and $H_2$, respectively. If $AB = 13$, $BC = 14$, $CA = 15$, and $H_1H_2 = 1001$, find $CD$. [b]p10.[/b] Find the sum of all positive integers $k$ such that $$\frac21 -\frac{3}{2 \times 1}+\frac{4}{3\times 2\times 1} + ...+ (-1)^{k+1} \frac{k+1}{k\times (k - 1)\times ... \times 2\times 1} \ge 1 + \frac{1}{700^3}$$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 Stanford Mathematics Tournament, 9

Let $a=-\sqrt{3}+\sqrt{5}+\sqrt{7}, b=\sqrt{3}-\sqrt{5}+\sqrt{7}, c=\sqrt{3}+\sqrt{5}-\sqrt{7}$. Evaluate \[\frac{a^4}{(a-b)(a-c)}+\frac{b^4}{(b-c)(b-a)}+\frac{c^4}{(c-a)(c-b)}.\]

2005 Romania Team Selection Test, 3

Let $\mathbb{N}=\{1,2,\ldots\}$. Find all functions $f: \mathbb{N}\to\mathbb{N}$ such that for all $m,n\in \mathbb{N}$ the number $f^2(m)+f(n)$ is a divisor of $(m^2+n)^2$.

1976 AMC 12/AHSME, 19

A polynomial $p(x)$ has remainder three when divided by $x-1$ and remainder five when divided by $x-3$. The remainder when $p(x)$ is divided by $(x-1)(x-3)$ is $\textbf{(A) }x-2\qquad\textbf{(B) }x+2\qquad\textbf{(C) }2\qquad\textbf{(D) }8\qquad \textbf{(E) }15$

2009 Paraguay Mathematical Olympiad, 4

Tags: algebra
Let $a_1, a_2, ..., a_n $ be a sequence such that the arithmetic mean of the $n$ terms is $n$. Consider $n = 2009$. Determine the sum of the $2009$ terms of the sequence.

ABMC Online Contests, 2022 Nov

[b]p1.[/b] Calculate $A \cdot B +M \cdot C$, where $A = 1$, $B = 2$, $C = 3$, $M = 13$. [b]p2.[/b] What is the remainder of $\frac{2022\cdot2023}{10}$ ? [b]p3.[/b] Daniel and Bryan are rolling fair $7$-sided dice. If the probability that the sum of the numbers that Daniel and Bryan roll is greater than $11$ can be represented as the fraction $\frac{a}{b}$ where $a$, $b$ are relatively prime positive integers, what is $a + b$? [b]p4.[/b] Billy can swim the breaststroke at $25$ meters per minute, the butterfly at $30$ meters per minute, and the front crawl at $40$ meters per minute. One day, he swam without stopping or slowing down, swimming $1130$ meters. If he swam the butterfly for twice as long as the breaststroke, plus one additional minute, and the front crawl for three times as long as the butterfly, minus eight minutes, for how many minutes did he swim? [b]p5.[/b] Elon Musk is walking around the circumference of Mars trying to find aliens. If the radius of Mars is $3396.2$ km and Elon Musk is $73$ inches tall, the difference in distance traveled between the top of his head and the bottom of his feet in inches can be expressed as $a\pi$ for an integer $a$. Find $a$. ($1$ yard is exactly $0.9144$ meters). [b]p6.[/b] Lukas is picking balls out of his five baskets labeled $1$,$2$,$3$,$4$,$5$. Each basket has $27$ balls, each labeled with the number of its respective basket. What is the least number of times Lukas must take one ball out of a random basket to guarantee that he has chosen at least $5$ balls labeled ”$1$”? If there are no balls in a chosen basket, Lukas will choose another random basket. [b]p7.[/b] Given $35_a = 42_b$, where positive integers $a$, $b$ are bases, find the minimum possible value of the sum $a + b$ in base $10$. [b]p8.[/b] Jason is playing golf. If he misses a shot, he has a $50$ percent chance of slamming his club into the ground. If a club is slammed into the ground, there is an $80$ percent chance that it breaks. Jason has a $40$ percent chance of hitting each shot. Given Jason must successfully hit five shots to win a prize, what is the expected number of clubs Jason will break before he wins a prize? [b]p9.[/b] Circle $O$ with radius $1$ is rolling around the inside of a rectangle with side lengths $5$ and $6$. Given the total area swept out by the circle can be represented as $a + b\pi$ for positive integers $a$, $b$ find $a + b$. [b]p10.[/b] Quadrilateral $ABCD$ has $\angle ABC = 90^o$, $\angle ADC = 120^o$, $AB = 5$, $BC = 18$, and $CD = 3$. Find $AD$. [b]p11.[/b] Raymond is eating huge burgers. He has been trained in the art of burger consumption, so he can eat one every minute. There are $100$ burgers to start with. However, at the end of every $20$ minutes, one of Raymond’s friends comes over and starts making burgers. Raymond starts with $1$ friend. If each of his friends makes $1$ burger every $20$ minutes, after how long in minutes will there be $0$ burgers left for the first time? [b]p12.[/b] Find the number of pairs of positive integers $(a, b)$ and $b\le a \le 2022$ such that $a\cdot lcm(a, b) = b \cdot gcd(a, b)^2$. [b]p13.[/b] Triangle $ABC$ has sides $AB = 6$, $BC = 10$, and $CA = 14$. If a point $D$ is placed on the opposite side of $AC$ from $B$ such that $\vartriangle ADC$ is equilateral, find the length of $BD$. [b]p14.[/b] If the product of all real solutions to the equation $(x-1)(x-2)(x-4)(x-5)(x-7)(x-8) = -x^2+9x-64$ can be written as $\frac{a-b\sqrt{c}}{d}$ for positive integers $a$, $b$, $c$, $d$ where $gcd(a, b, d) = 1$ and $c$ is squarefree, compute $a + b + c + d$. [b]p15.[/b] Joe has a calculator with the keys $1, 2, 3, 4, 5, 6, 7, 8, 9,+,-$. However, Joe is blind. If he presses $4$ keys at random, and the expected value of the result can be written as $\frac{x}{11^4}$ , compute the last $3$ digits of $x$ when $x$ divided by $1000$. (If there are consecutive signs, they are interpreted as the sign obtained when multiplying the two signs values together, e.g $3$,$+$,$-$,$-$, $2$ would return $3 + (-(-(2))) = 3 + 2 = 5$. Also, if a sign is pressed last, it is ignored.) PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1994 AIME Problems, 13

The equation \[ x^{10}+(13x-1)^{10}=0 \] has 10 complex roots $r_1, \overline{r_1}, r_2, \overline{r_2}, r_3, \overline{r_3}, r_4, \overline{r_4}, r_5, \overline{r_5},$ where the bar denotes complex conjugation. Find the value of \[ \frac 1{r_1\overline{r_1}}+\frac 1{r_2\overline{r_2}}+\frac 1{r_3\overline{r_3}}+\frac 1{r_4\overline{r_4}}+\frac 1{r_5\overline{r_5}}. \]