Found problems: 15925
2022 VN Math Olympiad For High School Students, Problem 1
Given [i]Fibonacci[/i] sequence $(F_n)$
a) Prove that: for all $u,v\in \mathbb{N}, u\ge 1$, we have:$$F_{u+v}=F_{u-1}F_{v}+F_{u}F_{v+1}.$$
b) Prove that: for all $n\in \mathbb{N}, n\ge 1$, we have:$$F_{2n}=F_n(F_{n-1}+F_{n+1}),$$$$F_{2n+1}=F_n^2+F_{n+1}^2.$$
1997 Korea National Olympiad, 6
Find all polynomial $P(x,y)$ for any reals $x,y$ such that
(i) $x^{100}+y^{100}\le P(x,y)\le 101(x^{100}+y^{100})$
(ii) $(x-y)P(x,y)=(x-1)P(x,1)+(1-y)P(1,y).$
2020 BMT Fall, 2
Let $m$ be the answer to this question. What is the value of $2m - 5$?
1996 Tuymaada Olympiad, 7
In the set of all positive real numbers define the operation $a * b = a^b$ .
Find all positive rational numbers for which $a * b = b * a$.
2010 Harvard-MIT Mathematics Tournament, 3
Let $p$ be a monic cubic polynomial such that $p(0)=1$ and such that all the zeroes of $p^\prime (x)$ are also zeroes of $p(x)$. Find $p$. Note: monic means that the leading coefficient is $1$.
2005 Serbia Team Selection Test, 1
Prove that there is n rational number $r$ such that $cosr\pi=\frac{3}{5}$
1989 India National Olympiad, 2
Let $ a,b,c$ and $ d$ be any four real numbers, not all equal to zero. Prove that the roots of the polynomial $ f(x) \equal{} x^{6} \plus{} ax^{3} \plus{} bx^{2} \plus{} cx \plus{} d$ can't all be real.
2010 Bosnia And Herzegovina - Regional Olympiad, 1
Prove the inequality $$ \frac{y^2-x^2}{2x^2+1}+\frac{z^2-y^2}{2y^2+1}+\frac{x^2-z^2}{2z^2+1} \geq 0$$ where $x$, $y$ and $z$ are real numbers
MMPC Part II 1996 - 2019, 2012
[b]p1.[/b] A permutation on $\{1, 2,..., n\}$ is an ordered arrangement of the numbers. For example, $32154$ is a permutation of $\{1, 2, 3, 4, 5\}$. Does there exist a permutation $a_1a_2... a_n$ of $\{1, 2,..., n\}$ such that $i+a_i$ is a perfect square for every $1 \le i \le n$ when
a) $n = 6$ ?
b) $n = 13$ ?
c) $n = 86$ ?
Justify your answers.
[b]p2.[/b] Circle $C$ and circle $D$ are tangent at point $P$. Line $L$ is tangent to $C$ at point $Q$ and to $D$ at point $R$ where $Q$ and $R$ are distinct from $P$. Circle $E$ is tangent to $C, D$, and $L$, and lies inside triangle $PQR$. $C$ and $D$ both have radius $8$. Find the radius of $E$, and justify your answer.
[img]https://cdn.artofproblemsolving.com/attachments/f/b/4b98367ea64e965369345247fead3456d3d18a.png[/img]
[b]p3.[/b] (a) Prove that $\sin 3x = 4 \cos^2 x \sin x - \sin x$ for all real $x$.
(b) Prove that $$(4 \cos^2 9^o - 1)(4 \cos^2 27^o - 1)(4 cos^2 81^o - 1)(4 cos^2 243^o - 1)$$ is an integer.
[b]p4.[/b] Consider a $3\times 3\times 3$ stack of small cubes making up a large cube (as with the small cubes in a Rubik's cube). An ant crawls on the surface of the large cube to go from one corner of the large cube to the opposite corner. The ant walks only along the edges of the small cubes and covers exactly nine of these edges. How many different paths can the ant take to reach its goal?
[b]p5.[/b] Let $m$ and $n$ be positive integers, and consider the rectangular array of points $(i, j)$ with $1 \le i \le m$, $1 \le j \le n$. For what pairs m; n of positive integers does there exist a polygon for which the $mn$ points $(i, j)$ are its vertices, such that each edge is either horizontal or vertical? The figure below depicts such a polygon with $m = 10$, $n = 22$. Thus $10$, $22$ is one such pair.
[img]https://cdn.artofproblemsolving.com/attachments/4/5/c76c0fe197a8d1ebef543df8e39114fe9d2078.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1994 Tuymaada Olympiad, 7
Prove that there are infinitely many natural numbers $a,b,c,u$ and $v$ with greatest common divisor $1$ satisfying the system of equations: $a+b+c=u+v$ and $a^2+b^2+c^2=u^2+v^2$
Russian TST 2018, P3
Alice and Bob play a game. First, Alice secretly picks a finite set $S$ of lattice points in the Cartesian plane. Then, for every line $\ell$ in the plane which is horizontal, vertical, or has slope $+1$ or $-1$, she tells Bob the number of points of $S$ that lie on $\ell$. Bob wins if he can determine the set $S$.
Prove that if Alice picks $S$ to be of the form
\[S = \{(x, y) \in \mathbb{Z}^2 \mid m \le x^2 + y^2 \le n\}\]
for some positive integers $m$ and $n$, then Bob can win. (Bob does not know in advance that $S$ is of this form.)
[i]Proposed by Mark Sellke[/i]
2015 Tuymaada Olympiad, 4
Let $n!=ab^2$ where $a$ is free from squares. Prove, that for every $\epsilon>0$ for every big enough $n$ it is true, that $$2^{(1-\epsilon)n}<a<2^{(1+\epsilon)n}$$
[i]M. Ivanov[/i]
2018 Iran MO (3rd Round), 2
Find all functions $f: \mathbb{R}^{\ge 0} \to \mathbb{R}^{\ge 0}$ such that:
$f(x^3+xf(xy))=f(xy)+x^2f(x+y) \forall x,y \in \mathbb{R}^{\ge 0}$
1985 All Soviet Union Mathematical Olympiad, 402
Given unbounded strictly increasing sequence $a_1, a_2, ... , a_n, ...$ of positive numbers. Prove that
a) there exists a number $k_0$ such that for all $k>k_0$ the following inequality is valid:
$$\frac{a_1}{a_2}+ \frac{a_2}{a_3} + ... + \frac{a_k}{a_{k-1} }< k - 1$$
b) there exists a number $k_0$ such that for all $k>k_0$ the following inequality is valid:
$$\frac{a_1}{a_2}+ \frac{a_2}{a_3} + ... + \frac{a_k}{a_{k-1} }< k - 1985$$
Estonia Open Junior - geometry, 2016.2.4
Let $d$ be a positive number. On the parabola, whose equation has the coefficient $1$ at the quadratic term, points $A, B$ and $C$ are chosen in such a way that the difference of the $x$-coordinates of points $A$ and $B$ is $d$ and the difference of the $x$-coordinates of points $B$ and $C$ is also $d$. Find the area of the triangle $ABC$.
1992 IMO Longlists, 82
Let $f(x) = x^m + a_1x^{m-1} + \cdots+ a_{m-1}x + a_m$ and $g(x) = x^n + b_1x^{n-1} + \cdots + b_{n-1}x + b_n$ be two polynomials with real coefficients such that for each real number $x, f(x)$ is the square of an integer if and only if so is $g(x)$. Prove that if $n +m > 0$, then there exists a polynomial $h(x)$ with real coefficients such that $f(x) \cdot g(x) = (h(x))^2.$
[hide="Remark."]Remark. The original problem stated $g(x) = x^n + b_1x^{n-1} + \cdots + {\color{red}{ b_{n-1}}} + b_n$, but I think the right form of the problem is what I wrote.[/hide]
2022 OMpD, 2
Let $p \geq 3$ be a prime number and let $A$ be a matrix of order $p$ with complex entries. Assume that $\text{Tr}(A) = 0$ and $\det(A - I_p) \neq 0$. Prove that $A^p \neq I_p$.
Note: $\text{Tr}(A)$ is the sum of the main diagonal elements of $A$ and $I_p$ is the identity matrix of order $p$.
2009 South africa National Olympiad, 6
Let $A$ denote the set of real numbers $x$ such that $0\le x<1$. A function $f:A\to \mathbb{R}$ has the properties:
(i) $f(x)=2f(\frac{x}{2})$ for all $x\in A$;
(ii) $f(x)=1-f(x-\frac{1}{2})$ if $\frac{1}{2}\le x<1$.
Prove that
(a) $f(x)+f(1-x)\ge \frac{2}{3}$ if $x$ is rational and $0<x<1$.
(b) There are infinitely many odd positive integers $q$ such that equality holds in (a) when $x=\frac{1}{q}$.
2024 Romania EGMO TST, P1
We denote by $\mathbb{R}^\plus{}$ the set of all positive real numbers.
Find all functions $f: \mathbb R^ \plus{} \rightarrow\mathbb R^ \plus{}$ which have the property:
\[f(x)f(y)\equal{}2f(x\plus{}yf(x))\]
for all positive real numbers $x$ and $y$.
[i]Proposed by Nikolai Nikolov, Bulgaria[/i]
2011 Saudi Arabia BMO TST, 1
Find all polynomials $P$ with real coefficients such that for all $x, y ,z \in R$,
$$P(x)+P(y)+P(z)+P(x+y+z)=P(x+y)+P(y+z)+P(z+x)$$
2003 Bosnia and Herzegovina Team Selection Test, 6
Let $a$, $b$ and $c$ be real numbers such that $\mid a \mid >2$ and $a^2+b^2+c^2=abc+4$. Prove that numbers $x$ and $y$ exist such that $a=x+\frac{1}{x}$, $b=y+\frac{1}{y}$ and $c=xy+\frac{1}{xy}$.
2018 MOAA, Individual
[b]p1.[/b] Find $20 \cdot 18 + 20 + 18 + 1$.
[b]p2.[/b] Suzie’s Ice Cream has $10$ flavors of ice cream, $5$ types of cones, and $5$ toppings to choose from. An ice cream cone consists of one flavor, one cone, and one topping. How many ways are there for Sebastian to order an ice cream cone from Suzie’s?
[b]p3.[/b] Let $a = 7$ and $b = 77$. Find $\frac{(2ab)^2}{(a+b)^2-(a-b)^2}$ .
[b]p4.[/b] Sebastian invests $100,000$ dollars. On the first day, the value of his investment falls by $20$ percent. On the second day, it increases by $25$ percent. On the third day, it falls by $25$ percent. On the fourth day, it increases by $60$ percent. How many dollars is his investment worth by the end of the fourth day?
[b]p5.[/b] Square $ABCD$ has side length $5$. Points $K,L,M,N$ are on segments $AB$,$BC$,$CD$,$DA$ respectively,such that $MC = CL = 2$ and $NA = AK = 1$. The area of trapezoid $KLMN$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find $m + n$.
[b]p6.[/b] Suppose that $p$ and $q$ are prime numbers. If $p + q = 30$, find the sum of all possible values of $pq$.
[b]p7.[/b] Tori receives a $15 - 20 - 25$ right triangle. She cuts the triangle into two pieces along the altitude to the side of length $25$. What is the difference between the areas of the two pieces?
[b]p8.[/b] The factorial of a positive integer $n$, denoted $n!$, is the product of all the positive integers less than or equal to $n$. For example, $1! = 1$ and $5! = 120$. Let $m!$ and $n!$ be the smallest and largest factorial ending in exactly $3$ zeroes, respectively. Find $m + n$.
[b]p9.[/b] Sam is late to class, which is located at point $B$. He begins his walk at point $A$ and is only allowed to walk on the grid lines. He wants to get to his destination quickly; how many paths are there that minimize his walking distance?
[img]https://cdn.artofproblemsolving.com/attachments/a/5/764e64ac315c950367357a1a8658b08abd635b.png[/img]
[b]p10.[/b] Mr. Iyer owns a set of $6$ antique marbles, where $1$ is red, $2$ are yellow, and $3$ are blue. Unfortunately, he has randomly lost two of the marbles. His granddaughter starts drawing the remaining $4$ out of a bag without replacement. She draws a yellow marble, then the red marble. Suppose that the probability that the next marble she draws is blue is equal to $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positiveintegers. What is $m + n$?
[b]p11.[/b] If $a$ is a positive integer, what is the largest integer that will always be a factor of $(a^3+1)(a^3+2)(a^3+3)$?
[b]p12.[/b] What is the largest prime number that is a factor of $160,401$?
[b]p13.[/b] For how many integers $m$ does the equation $x^2 + mx + 2018 = 0$ have no real solutions in $x$?
[b]p14.[/b] What is the largest palindrome that can be expressed as the product of two two-digit numbers? A palindrome is a positive integer that has the same value when its digits are reversed. An example of a palindrome is $7887887$.
[b]p15.[/b] In circle $\omega$ inscribe quadrilateral $ADBC$ such that $AB \perp CD$. Let $E$ be the intersection of diagonals $AB$ and $CD$, and suppose that $EC = 3$, $ED = 4$, and $EB = 2$. If the radius of $\omega$ is $r$, then $r^2 =\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Determine $m + n$.
[b]p16.[/b] Suppose that $a, b, c$ are nonzero real numbers such that $2a^2 + 5b^2 + 45c^2 = 4ab + 6bc + 12ca$. Find the value of $\frac{9(a + b + c)^3}{5abc}$ .
[b]p17.[/b] Call a positive integer n spicy if there exist n distinct integers $k_1, k_2, ... , k_n$ such that the following two conditions hold:
$\bullet$ $|k_1| + |k_2| +... + |k_n| = n2$,
$\bullet$ $k_1 + k_2 + ...+ k_n = 0$.
Determine the number of spicy integers less than $10^6$.
[b]p18.[/b] Consider the system of equations $$|x^2 - y^2 - 4x + 4y| = 4$$
$$|x^2 + y^2 - 4x - 4y| = 4.$$ Find the sum of all $x$ and $y$ that satisfy the system.
[b]p19.[/b] Determine the number of $8$ letter sequences, consisting only of the letters $W,Q,N$, in which none of the sequences $WW$, $QQQ$, or $NNNN$ appear. For example, $WQQNNNQQ$ is a valid sequence, while $WWWQNQNQ$ is not.
[b]p20.[/b] Triangle $\vartriangle ABC$ has $AB = 7$, $CA = 8$, and $BC = 9$. Let the reflections of $A,B,C$ over the orthocenter H be $A'$,$B'$,$C'$. The area of the intersection of triangles $ABC$ and $A'B'C'$ can be expressed in the form $\frac{a\sqrt{b}}{c}$ , where $b$ is squarefree and $a$ and $c$ are relatively prime. determine $a+b+c$. (The orthocenter of a triangle is the intersection of its three altitudes.)
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2016 India IMO Training Camp, 2
Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that $$f\left(x^3+f(y)\right)=x^2f(x)+y,$$for all $x,y\in\mathbb{R}.$ (Here $\mathbb{R}$ denotes the set of all real numbers.)
1981 Canada National Olympiad, 4
$P(x),Q(x)$ are two polynomials such that $P(x)=Q(x)$ has no real solution, and $P(Q(x))\equiv Q(P(x))\forall x\in\mathbb{R}$. Prove that $P(P(x))=Q(Q(x))$ has no real solution.
2006 Taiwan National Olympiad, 3
$f(x)=x^3-6x^2+17x$. If $f(a)=16, f(b)=20$, find $a+b$.