This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

Mid-Michigan MO, Grades 7-9, 2017

[b]p1.[/b] There are $5$ weights of masses $1,2,3,5$, and $10$ grams. One of the weights is counterfeit (its weight is different from what is written, it is unknown if the weight is heavier or lighter). How to find the counterfeit weight using simple balance scales only twice? [b]p2.[/b] There are $998$ candies and chocolate bars and $499$ bags. Each bag may contain two items (either two candies, or two chocolate bars, or one candy and one chocolate bar). Ann distributed candies and chocolate bars in such a way that half of the candies share a bag with a chocolate bar. Helen wants to redistribute items in the same bags in such a way that half of the chocolate bars would share a bag with a candy. Is it possible to achieve that? [b]p3.[/b] Insert in sequence $2222222222$ arithmetic operations and brackets to get the number $999$ (For instance, from the sequence $22222$ one can get the number $45$: $22*2+2/2 = 45$). [b]p4.[/b] Put numbers from $15$ to $23$ in a $ 3\times 3$ table in such a way to make all sums of numbers in two neighboring cells distinct (neighboring cells share one common side). [b]p5.[/b] All integers from $1$ to $200$ are colored in white and black colors. Integers $1$ and $200$ are black, $11$ and $20$ are white. Prove that there are two black and two white numbers whose sums are equal. [b]p6.[/b] Show that $38$ is the sum of few positive integers (not necessarily, distinct), the sum of whose reciprocals is equal to $1$. (For instance, $11=6+3+2$, $1/16+1/13+1/12=1$.) PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 ISI B.Math Entrance Exam, 6

Let $a_0=0<a_1<a_2<...<a_n$ be real numbers . Supppose $p(t)$ is a real valued polynomial of degree $n$ such that $\int_{a_j}^{a_{j+1}} p(t)\,dt = 0\ \ \forall \ 0\le j\le n-1$ Show that , for $0\le j\le n-1$ , the polynomial $p(t)$ has exactly one root in the interval $ (a_j,a_{j+1})$

2018 ABMC, 2018 Oct

[b]p1.[/b] Compute the greatest integer less than or equal to $$\frac{10 + 12 + 14 + 16 + 18 + 20}{21}$$ [b]p2.[/b] Let$ A = 1$.$B = 2$, $C = 3$, $...$, $Z = 26$. Find $A + B +M + C$. [b]p3.[/b] In Mr. M's farm, there are $10$ cows, $8$ chickens, and $4$ spiders. How many legs are there (including Mr. M's legs)? [b]p4.[/b] The area of an equilateral triangle with perimeter $18$ inches can be expressed in the form $a\sqrt{b}{c}$ , where $a$ and $c$ are relatively prime and $b$ is not divisible by the square of any prime. Find $a + b + c$. [b]p5.[/b] Let $f$ be a linear function so $f(x) = ax + b$ for some $a$ and $b$. If $f(1) = 2017$ and $f(2) = 2018$, what is $f(2019)$? [b]p6.[/b] How many integers $m$ satisfy $4 < m^2 \le 216$? [b]p7.[/b] Allen and Michael Phelps compete at the Olympics for swimming. Allen swims $\frac98$ the distance Phelps swims, but Allen swims in $\frac59$ of Phelps's time. If Phelps swims at a rate of $3$ kilometers per hour, what is Allen's rate of swimming? The answer can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$. [b]p8.[/b] Let $X$ be the number of distinct arrangements of the letters in "POONAM," $Y$ be the number of distinct arrangements of the letters in "ALLEN" and $Z$ be the number of distinct arrangements of the letters in "NITHIN." Evaluate $\frac{X+Z}{Y}$ : [b]p9.[/b] Two overlapping circles, both of radius $9$ cm, have centers that are $9$ cm apart. The combined area of the two circles can be expressed as $\frac{a\pi+b\sqrt{c}+d}{e}$ where $c$ is not divisible by the square of any prime and the fraction is simplified. Find $a + b + c + d + e$. [b]p10.[/b] In the Boxborough-Acton Regional High School (BARHS), $99$ people take Korean, $55$ people take Maori, and $27$ people take Pig Latin. $4$ people take both Korean and Maori, $6$ people take both Korean and Pig Latin, and $5$ people take both Maori and Pig Latin. $1$ especially ambitious person takes all three languages, and and $100$ people do not take a language. If BARHS does not o er any other languages, how many students attend BARHS? [b]p11.[/b] Let $H$ be a regular hexagon of side length $2$. Let $M$ be the circumcircle of $H$ and $N$ be the inscribed circle of $H$. Let $m, n$ be the area of $M$ and $N$ respectively. The quantity $m - n$ is in the form $\pi a$, where $a$ is an integer. Find $a$. [b]p12.[/b] How many ordered quadruples of positive integers $(p, q, r, s)$ are there such that $p + q + r + s \le 12$? [b]p13.[/b] Let $K = 2^{\left(1+ \frac{1}{3^2} \right)\left(1+ \frac{1}{3^4} \right)\left(1+ \frac{1}{3^8}\right)\left(1+ \frac{1}{3^{16}} \right)...}$. What is $K^8$? [b]p14.[/b] Neetin, Neeton, Neethan, Neethine, and Neekhil are playing basketball. Neetin starts out with the ball. How many ways can they pass 5 times so that Neethan ends up with the ball? [b]p15.[/b] In an octahedron with side lengths $3$, inscribe a sphere. Then inscribe a second sphere tangent to the first sphere and to $4$ faces of the octahedron. The radius of the second sphere can be expressed in the form $\frac{\sqrt{a}-\sqrt{b}}{c}$ , where the square of any prime factor of $c$ does not evenly divide into $b$. Compute $a + b + c$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 District Olympiad, 4

[b]a)[/b] Prove that not all functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that satisfy the equality $$ f(x-1)+f(x+1) =\sqrt 5f(x) ,\quad\forall x\in\mathbb{R} , $$ are periodic. [b]b)[/b] Prove that that all functions $ g:\mathbb{R}\longrightarrow\mathbb{R} $ that satisfy the equality $$ g(x-1)+g(x+1)=\sqrt 3g(x) ,\quad\forall x\in\mathbb{R} , $$ are periodic.

2000 Singapore Team Selection Test, 1

Find all functions $f : R \to R$ such for any $x, y \in R,$ $$(x - y)f(x + y) - (x + y)f(x - y) = 4xy(x^2 - y^2)$$

2001 Tournament Of Towns, 4

There are two matrices $A$ and $B$ of size $m\times n$ each filled only by “0”s and “1”s. It is given that along any row or column its elements do not decrease (from left to right and from top to bottom).It is also given that the numbers of “1”s in both matrices are equal and for any $k = 1, . . .$ , $m$ the sum of the elements in the top $k$ rows of the matrix $A$ is no less than that of the matrix $B$. Prove for any $l = 1, . . . $, $n$ the sum of the elements in left $l$ columns of the matrix $A$ is no greater than that of the matrix $B$.

2021 Thailand TST, 1

[i]Version 1[/i]. Let $n$ be a positive integer, and set $N=2^{n}$. Determine the smallest real number $a_{n}$ such that, for all real $x$, \[ \sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant a_{n}(x-1)^{2}+x . \] [i]Version 2[/i]. For every positive integer $N$, determine the smallest real number $b_{N}$ such that, for all real $x$, \[ \sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant b_{N}(x-1)^{2}+x . \]

2006 Moldova MO 11-12, 6

Sequences $(x_n)_{n\ge1}$, $(y_n)_{n\ge1}$ satisfy the relations $x_n=4x_{n-1}+3y_{n-1}$ and $y_n=2x_{n-1}+3y_{n-1}$ for $n\ge1$. If $x_1=y_1=5$ find $x_n$ and $y_n$. Calculate $\lim_{n\rightarrow\infty}\frac{x_n}{y_n}$.

1986 Flanders Math Olympiad, 4

Given a cube in which you can put two massive spheres of radius 1. What's the smallest possible value of the side - length of the cube? Prove that your answer is the best possible.

2001 China Team Selection Test, 3

Given $a$, $b$ are positive integers greater than $1$, and for every positive integer $n$, $b^{n}-1$ divides $a^{n}-1$. Define the polynomial $p_{n}(x)$ as follows: $p_0{x}=-1$, $p_{n+1}(x)=b^{n+1}(x-1)p_{n}(bx)-a(b^{n+1}-1)p_{n}(x)$, for $n \ge 0$. Prove that there exist integers $C$ and positive integer $k$ such that $p_{k}(x)=Cx^k$.

1975 IMO, 1

We consider two sequences of real numbers $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $\ y_{1} \geq y_{2} \geq \ldots \geq y_{n}.$ Let $z_{1}, z_{2}, .\ldots, z_{n}$ be a permutation of the numbers $y_{1}, y_{2}, \ldots, y_{n}.$ Prove that $\sum \limits_{i=1}^{n} ( x_{i} -\ y_{i} )^{2} \leq \sum \limits_{i=1}^{n}$ $( x_{i} - z_{i})^{2}.$

2023 Poland - Second Round, 4

Given pairwise different real numbers $a,b,c,d,e$ such that $$ \left\{ \begin{array}{ll} ab + b = ac + a, \\ bc + c = bd + b, \\ cd + d = ce + c, \\ de + e = da + d. \end{array} \right. $$ Prove that $abcde=1$.

1996 German National Olympiad, 6a

Tags: polynomial , root , algebra
Prove the following statement: If a polynomial $p(x) = x^3 + Ax^2 + Bx +C$ has three real positve roots at least two of which are distinct, then $A^2 +B^2 +18C > 0$.

2004 Thailand Mathematical Olympiad, 3

Let $u, v, w$ be the roots of $x^3 -5x^2 + 4x-3 = 0$. Find a cubic polynomial having $u^3, v^3, w^3$ as roots.

2019 Korea Winter Program Practice Test, 3

Find all polynomials $P(x)$ with integer coefficients such that for all positive number $n$ and prime $p$ satisfying $p\nmid nP(n)$, we have $ord_p(n)\ge ord_p(P(n))$.

2022 Puerto Rico Team Selection Test, 1

Find all triples $(a, b, c)$ of positive integers such that: $$a + b + c = 24$$ $$a^2 + b^2 + c^2 = 210$$ $$abc = 440$$

2002 Czech and Slovak Olympiad III A, 1

Solve the system \[(4x)_5+7y=14 \\ (2y)_5 -(3x)_7=74\] in the domain of integers, where $(n)_k$ stands for the multiple of the number $k$ closest to the number $n$.

2011 JBMO Shortlist, 9

Tags: algebra
Let $x_1,x_2, ..., x_n$ be real numbers satisfying $\sum_{k=1}^{n-1} min(x_k; x_{k+1}) = min(x_1; x_n)$. Prove that $\sum_{k=2}^{n-1} x_k \ge 0$.

2017 Brazil Undergrad MO, 1

A polynomial is called positivist if it can be written as a product of two non-constant polynomials with non-negative real coefficients. Let $f(x)$ be a polynomial of degree greater than one such that $f(x^n)$ is positivist for some positive integer $n$. Show that $f(x)$ is positivist.

1991 Federal Competition For Advanced Students, P2, 4

Tags: algebra
The sequence $ (a_n)$ is given by $ a_1\equal{}1,a_2\equal{}0$ and: $ a_{2k\plus{}1}\equal{}a_k\plus{}a_{k\plus{}1}, a_{2k\plus{}2}\equal{}2a_{k\plus{}1}$ for $ k \in \mathbb{N}.$ Find $ a_m$ for $ m\equal{}2^{19}\plus{}91.$

2015 India National Olympiad, 3

Find all real functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(x^2+yf(x))=xf(x+y)$.

2007 Junior Macedonian Mathematical Olympiad, 3

Let $a$, $b$, $c$ be real numbers such that $0 < a \le b \le c$. Prove that $(a + 3b)(b + 4c)(c + 2a) \ge 60abc$. When does equality hold?

2023 Stars of Mathematics, 4

Determine all positive integers $n{}$ for which there exist pairwise distinct integers $a_1,\ldots,a_n{}$ and $b_1,\ldots, b_n$ such that \[\prod_{i=1}^n(a_k^2+a_ia_k+b_i)=\prod_{i=1}^n(b_k^2+a_ib_k+b_i)=0, \quad \forall k=1,\ldots,n.\]

2021 BmMT, Team Round

[b]p1.[/b] What is the area of a triangle with side lengths $ 6$, $ 8$, and $10$? [b]p2.[/b] Let $f(n) = \sqrt{n}$. If $f(f(f(n))) = 2$, compute $n$. [b]p3.[/b] Anton is buying AguaFina water bottles. Each bottle costs $14 $dollars, and Anton buys at least one water bottle. The number of dollars that Anton spends on AguaFina water bottles is a multiple of $10$. What is the least number of water bottles he can buy? [b]p4.[/b] Alex flips $3$ fair coins in a row. The probability that the first and last flips are the same can be expressed in the form $m/n$ for relatively prime positive integers $m$ and $n$. Compute $m + n$. [b]p5.[/b] How many prime numbers $p$ satisfy the property that $p^2 - 1$ is not a multiple of $6$? [b]p6.[/b] In right triangle $\vartriangle ABC$ with $AB = 5$, $BC = 12$, and $CA = 13$, point $D$ lies on $\overline{CA}$ such that $AD = BD$. The length of $CD$ can then be expressed in the form $m/n$ for relatively prime positive integers $m$ and $n$. Compute $m + n$. [b]p7.[/b] Vivienne is deciding on what courses to take for Spring $2021$, and she must choose from four math courses, three computer science courses, and five English courses. Vivienne decides that she will take one English course and two additional courses that are either computer science or math. How many choices does Vivienne have? [b]p8.[/b] Square $ABCD$ has side length $2$. Square $ACEF$ is drawn such that $B$ lies inside square $ACEF$. Compute the area of pentagon $AFECD$. [b]p9.[/b] At the Boba Math Tournament, the Blackberry Milk Team has answered $4$ out of the first $10$ questions on the Boba Round correctly. If they answer all $p$ remaining questions correctly, they will have answered exactly $\frac{9p}{5}\%$ of the questions correctly in total. How many questions are on the Boba Round? [b]p10.[/b] The sum of two positive integers is $2021$ less than their product. If one of them is a perfect square, compute the sum of the two numbers. [b]p11.[/b] Points $E$ and $F$ lie on edges $\overline{BC}$ and $\overline{DA}$ of unit square $ABCD$, respectively, such that $BE =\frac13$ and $DF =\frac13$ . Line segments $\overline{AE}$ and $\overline{BF}$ intersect at point $G$. The area of triangle $EFG$ can be written in the form $m/n$ , where $m$ and $n$ are relatively prime positive integers. Compute $m+n$. [b]p12.[/b] Compute the number of positive integers $n \le 2020$ for which $n^{k+1}$ is a factor of $(1+2+3+· · ·+n)^k$ for some positive integer $k$. [b]p13.[/b] How many permutations of $123456$ are divisible by their last digit? For instance, $123456$ is divisible by $6$, but $561234$ is not divisible by $4$. [b]p14.[/b] Compute the sum of all possible integer values for $n$ such that $n^2 - 2n - 120$ is a positive prime number. [b]p15. [/b]Triangle $\vartriangle ABC$ has $AB =\sqrt{10}$, $BC =\sqrt{17}$, and $CA =\sqrt{41}$. The area of $\vartriangle ABC$ can be expressed in the form $m/n$ for relatively prime positive integers $m$ and $n$. Compute $m + n$. [b]p16.[/b] Let $f(x) = \frac{1 + x^3 + x^{10}}{1 + x^{10}}$ . Compute $f(-20) + f(-19) + f(-18) + ...+ f(20)$. [b]p17.[/b] Leanne and Jing Jing are walking around the $xy$-plane. In one step, Leanne can move from any point $(x, y)$ to $(x + 1, y)$ or $(x, y + 1)$ and Jing Jing can move from $(x, y)$ to $(x - 2, y + 5)$ or $(x + 3, y - 1)$. The number of ways that Leanne can move from $(0, 0)$ to $(20, 20)$ is equal to the number of ways that Jing Jing can move from $(0, 0)$ to $(a, b)$, where a and b are positive integers. Compute the minimum possible value of $a + b$. [b]p18.[/b] Compute the number positive integers $1 < k < 2021$ such that the equation $x +\sqrt{kx} = kx +\sqrt{x}$ has a positive rational solution for $x$. [b]p19.[/b] In triangle $\vartriangle ABC$, point $D$ lies on $\overline{BC}$ with $\overline{AD} \perp \overline{BC}$. If $BD = 3AD$, and the area of $\vartriangle ABC$ is $15$, then the minimum value of $AC^2$ is of the form $p\sqrt{q} - r$, where $p, q$, and $r$ are positive integers and $q$ is not divisible by the square of any prime number. Compute $p + q + r$. [b]p20. [/b]Suppose the decimal representation of $\frac{1}{n}$ is in the form $0.p_1p_2...p_j\overline{d_1d_2...d_k}$, where $p_1, ... , p_j$ , $d_1,... , d_k$ are decimal digits, and $j$ and $k$ are the smallest possible nonnegative integers (i.e. it’s possible for $j = 0$ or $k = 0$). We define the [i]preperiod [/i]of $\frac{1}{n}$ to be $j$ and the [i]period [/i]of $\frac{1}{n}$ to be $k$. For example, $\frac16 = 0.16666...$ has preperiod $1$ and period $1$, $\frac17 = 0.\overline{142857}$ has preperiod $0$ and period $6$, and $\frac14 = 0.25$ has preperiod $2$ and period $0$. What is the smallest positive integer $n$ such that the sum of the preperiod and period of $\frac{1}{n}$ is $ 8$? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

MMPC Part II 1958 - 95, 1977

[b]p1.[/b] A teenager coining home after midnight heard the hall clock striking the hour. At some moment between $15$ and $20$ minutes later, the minute hand hid the hour hand. To the nearest second, what time was it then? [b]p2.[/b] The ratio of two positive integers $a$ and $b$ is $2/7$, and their sum is a four digit number which is a perfect cube. Find all such integer pairs. [b]p3.[/b] Given the integers $1, 2 , ..., n$ , how many distinct numbers are of the form $\sum_{k=1}^n( \pm k) $ , where the sign ($\pm$) may be chosen as desired? Express answer as a function of $n$. For example, if $n = 5$ , then we may form numbers: $ 1 + 2 + 3- 4 + 5 = 7$ $-1 + 2 - 3- 4 + 5 = -1$ $1 + 2 + 3 + 4 + 5 = 15$ , etc. [b]p4.[/b] $\overline{DE}$ is a common external tangent to two intersecting circles with centers at $O$ and $O'$. Prove that the lines $AD$ and $BE$ are perpendicular. [img]https://cdn.artofproblemsolving.com/attachments/1/f/40ffc1bdf63638cd9947319734b9600ebad961.png[/img] [b]p5.[/b] Find all polynomials $f(x)$ such that $(x-2) f(x+1) - (x+1) f(x) = 0$ for all $x$ . PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].