This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2023 Austrian MO Beginners' Competition, 1

Tags: algebra
Let $x, y, z$ be nonzero real numbers with $$\frac{x + y}{z}=\frac{y + z}{x}=\frac{z + x}{y}.$$ Determine all possible values of $$\frac{(x + y)(y + z)(z + x)}{xyz}.$$ [i](Walther Janous)[/i]

2024 LMT Fall, 17

Tags: algebra , guts
Suppose $x$, $y$, $z$ are pairwise distinct real numbers satisfying \[ x^2+3y =y^2 +3z = z^2+3x. \]Find $(x+y)(y+z)(z+x)$.

2017-IMOC, A5

Find all functions $f:\mathbb Z\to\mathbb Z$ such that $$f(mf(n+1))=f(m+1)f(n)+f(f(n))+1$$for all integer pairs $(m,n)$.

LMT Guts Rounds, 2011

[u]Round 9[/u] [b]p25.[/b] Let $S$ be the region bounded by the lines $y = x/2$, $y = -x/2$, and $x = 6$. Pick a random point $P = (x, y)$ in $S$ and translate it $3$ units right to $P' = (x + 3, y)$. What is the probability that $P'$ is in $S$? [b]p26.[/b] A triangle with side lengths $17$, $25$, and $28$ has a circle centered at each of its three vertices such that the three circles are mutually externally tangent to each other. What is the combined area of the circles? [b]p27.[/b] Find all ordered pairs $(x, y)$ of integers such that $x^2 - 2x + y^2 - 6y = -9$. [u]Round 10[/u] [b]p28.[/b] In how many ways can the letters in the word $SCHAFKOPF$ be arranged if the two $F$’s cannot be next to each other and the $A$ and the $O$ must be next to each other? [b]p29.[/b] Let a sequence $a_0, a_1, a_2, ...$ be defined by $a_0 = 20$, $a_1 = 11$, $a_2 = 0$, and for all integers $n \ge 3$, $$a_n + a_{n-1 }= a_{n-2} + a_{n-3}.$$ Find the sum $a_0 + a_1 + a_2 + · · · + a_{2010} + a_{2011}$. [b]p30.[/b] Find the sum of all positive integers b such that the base $b$ number $190_b$ is a perfect square. [u]Round 11[/u] [b]p31.[/b] Find all real values of x such that $\sqrt[3]{4x -1} + \sqrt[3]{4x + 1 }= \sqrt[3]{8x}$. [b]p32.[/b] Right triangle $ABC$ has a right angle at B. The angle bisector of $\angle ABC$ is drawn and extended to a point E such that $\angle ECA = \angle ACB$. Let $F$ be the foot of the perpendicular from $E$ to ray $\overrightarrow{BC}$. Given that $AB = 4$, $BC = 2$, and $EF = 8$, find the area of triangle $ACE$. [b]p33.[/b] You are the soul in the southwest corner of a four by four grid of distinct souls in the Fields of Asphodel. You move one square east and at the same time all the other souls move one square north, south, east, or west so that each square is now reoccupied and no two souls switched places directly. How many end results are possible from this move? [u]Round 12[/u] [b]p34.[/b] A [i]Pythagorean [/i] triple is an ordered triple of positive integers $(a, b, c)$ with $a < b < c $and $a^2 + b^2 = c^2$ . A [i]primitive [/i] Pythagorean triple is a Pythagorean triple where all three numbers are relatively prime to each other. Find the number of primitive Pythagorean triples in which all three members are less than $100,000$. If $P$ is the true answer and $A$ is your team’s answer to this problem, your score will be $max \left\{15 -\frac{|A -P|}{500} , 0 \right\}$ , rounded to the nearest integer. [b]p35.[/b] According to the Enable2k North American word list, how many words in the English language contain the letters $L, M, T$ in order but not necessarily together? If $A$ is your team’s answer to this problem and $W$ is the true answer, the score you will receive is $max \left\{15 -100\left| \frac{A}{W}-1\right| , 0 \right\}$, rounded to the nearest integer. [b]p36.[/b] Write down $5$ positive integers less than or equal to $42$. For each of the numbers written, if no other teams put down that number, your team gets $3$ points. Otherwise, you get $0$ points. Any number written that does not satisfy the given requirement automatically gets $0$ points. PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2952214p26434209]here[/url] and 5-8 [url=https://artofproblemsolving.com/community/c3h3133709p28395558]here[/url]. Rest Rounds soon. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 KOSOVO TST, 3

Tags: quadratic , algebra
Equations $x^2+ax+b=0$ and $x^2+px+q=0$ have a common root.Find quadratic equation roots of which are two other roots.

2023 Lusophon Mathematical Olympiad, 4

Tags: algebra
A positive integer with 3 digits $\overline{ABC}$ is $Lusophon$ if $\overline{ABC}+\overline{CBA}$ is a perfect square. Find all $Lusophon$ numbers.

1990 IMO Longlists, 95

Let $ p(x)$ be a cubic polynomial with rational coefficients. $ q_1$, $ q_2$, $ q_3$, ... is a sequence of rationals such that $ q_n \equal{} p(q_{n \plus{} 1})$ for all positive $ n$. Show that for some $ k$, we have $ q_{n \plus{} k} \equal{} q_n$ for all positive $ n$.

2021 Austrian Junior Regional Competition, 1

Tags: algebra , sum , cool , easy
The pages of a notebook are numbered consecutively so that the numbers $1$ and $2$ are on the second sheet, numbers $3$ and $4$, and so on. A sheet is torn out of this notebook. All of the remaining page numbers are addedand have sum $2021$. (a) How many pages could the notebook originally have been? (b) What page numbers can be on the torn sheet? (Walther Janous)

2014 Vietnam National Olympiad, 1

Let $({{x}_{n}}),({{y}_{n}})$ be two positive sequences defined by ${{x}_{1}}=1,{{y}_{1}}=\sqrt{3}$ and \[ \begin{cases} {{x}_{n+1}}{{y}_{n+1}}-{{x}_{n}}=0 \\ x_{n+1}^{2}+{{y}_{n}}=2 \end{cases} \] for all $n=1,2,3,\ldots$. Prove that they are converges and find their limits.

2022 Polish Junior Math Olympiad Finals, 4.

Tags: algebra
Find all triples $(a,b,c)$ of nonzero integers for which \[(1-a)(1-b)(1-c)=(1+a)(1+b)(1+c).\]

2015 Germany Team Selection Test, 3

Construct a tetromino by attaching two $2 \times 1$ dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them $S$- and $Z$-tetrominoes, respectively. Assume that a lattice polygon $P$ can be tiled with $S$-tetrominoes. Prove that no matter how we tile $P$ using only $S$- and $Z$-tetrominoes, we always use an even number of $Z$-tetrominoes. [i]Proposed by Tamas Fleiner and Peter Pal Pach, Hungary[/i]

2024 Bundeswettbewerb Mathematik, 2

Determine the set of all real numbers $r$ for which there exists an infinite sequence $a_1,a_2,\dots$ of positive integers satisfying the following three properties: (1) No number occurs more than once in the sequence. (2) The sum of two different elements of the sequence is never a power of two. (3) For all positive integers $n$, we have $a_n<r \cdot n$.

2011 Kazakhstan National Olympiad, 6

Given a positive integer $n$. One of the roots of a quadratic equation $x^{2}-ax +2 n = 0$ is equal to $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}$. Prove that $2\sqrt{2n}\le a\le 3\sqrt{n}$

2023 Kyiv City MO Round 1, Problem 4

Let's call a pair of positive integers $\overline{a_1a_2\ldots a_k}$ and $\overline{b_1b_2\ldots b_k}$ $k$-similar if all digits $a_1, a_2, \ldots, a_k , b_1 , b_2, \ldots, b_k$ are distinct, and there exist distinct positive integers $m, n$, for which the following equality holds: $$a_1^m + a_2^m + \ldots + a_k^m = b_1^n + b_2^n + \ldots + b_k^n$$ For which largest $k$ do there exist $k$-similar numbers? [i]Proposed by Oleksiy Masalitin[/i]

2017 Saudi Arabia IMO TST, 2

Find all $f:\mathbb{R}\to\mathbb{R}$ satisfying: $$f(xf(y)-y)+f(xy-x)+f(x+y)=2xy,\quad\forall x,y\in\mathbb{R}.$$

1983 Swedish Mathematical Competition, 6

Show that the only real solution to \[\left\{ \begin{array}{l} x(x+y)^2 = 9 \\ x(y^3 - x^3) = 7 \\ \end{array} \right. \] is $x = 1$, $y = 2$.

LMT Speed Rounds, 2015

[b]p1.[/b] What is $\sqrt[2015]{2^01^5}$? [b]p2.[/b] What is the ratio of the area of square $ABCD$ to the area of square $ACEF$? [b]p3.[/b] $2015$ in binary is $11111011111$, which is a palindrome. What is the last year which also had this property? [b]p4.[/b] What is the next number in the following geometric series: $1020100$, $10303010$, $104060401$? [b]p5.[/b] A circle has radius $A$ and area $r$. If $A = r^2\pi$, then what is the diameter, $C$, of the circle? [b]p6.[/b] If $$O + N + E = 1$$ $$T + H + R + E + E = 3$$ $$N + I + N + E = 9$$ $$T + E + N = 10$$ $$T + H + I + R + T + E + E + N = 13$$ Then what is the value of $O$? [b]p7.[/b] By shifting the initial digit, which is $6$, of the positive integer $N$ to the end (for example, $65$ becomes $56$), we obtain a number equal to $\frac{N}{4}$ . What is the smallest such $N$? [b]p8.[/b] What is $\sqrt[3]{\frac{2015!(2013!)+2014!(2012!)}{2013!(2012!)}}$ ? [b]p9.[/b] How many permutations of the digits of $1234$ are divisible by $11$? [b]p10.[/b] If you choose $4$ cards from a normal $52$ card deck (with replacement), what is the probability that you will get exactly one of each suit (there are $4$ suits)? [b]p11.[/b] If $LMT$ is an equilateral triangle, and $MATH$ is a square, such that point $A$ is in the triangle, then what is $HL/AL$? [b]p12.[/b] If $$\begin{tabular}{cccccccc} & & & & & L & H & S\\ + & & & & H & I & G & H \\ + & & S & C & H & O & O & L \\ \hline = & & S & O & C & O & O & L \\ \end{tabular}$$ and $\{M, A, T,H, S, L,O, G, I,C\} = \{0, 1, 2, 3,4, 5, 6, 7, 8, 9\} $, then what is the ordered pair $(M + A +T + H, [T + e + A +M])$ where $e$ is $2.718...$and $[n]$ is the greatest integer less than or equal to $n$ ? [b]p13.[/b] There are $5$ marbles in a bag. One is red, one is blue, one is green, one is yellow, and the last is white. There are $4$ people who take turns reaching into the bag and drawing out a marble without replacement. If the marble they draw out is green, they get to draw another marble out of the bag. What is the probability that the $3$rd person to draw a marble gets the white marble? [b]p14.[/b] Let a "palindromic product" be a product of numbers which is written the same when written back to front, including the multiplication signs. For example, $234 * 545 * 432$, $2 * 2 *2 *2$, and $14 * 41$ are palindromic products whereas $2 *14 * 4 * 12$, $567 * 567$, and $2* 2 * 3* 3 *2$ are not. 2015 can be written as a "palindromic product" in two ways, namely $13 * 5 * 31$ and $31 * 5 * 13$. How many ways can you write $2016$ as a palindromic product without using 1 as a factor? [b]p15.[/b] Let a sequence be defined as $S_n = S_{n-1} + 2S_{n-2}$, and $S_1 = 3$ and $S_2 = 4$. What is $\sum_{n=1}^{\infty}\frac{S_n}{3^n}$ ? [b]p16.[/b] Put the numbers $0-9$ in some order so that every $2$-digit substring creates a number which is either a multiple of $7$, or a power of $2$. [b]p17.[/b] Evaluate $\dfrac{8+ \dfrac{8+ \dfrac{8+...}{3+...}}{3+ \dfrac{8+...}{3+...}}}{3+\dfrac{8+ \dfrac{8+...}{3+...}}{ 3+ \dfrac{8+...}{3+...}}}$, assuming that it is a positive real number. [b]p18.[/b] $4$ non-overlapping triangles, each of area $A$, are placed in a unit circle. What is the maximum value of $A$? [b]p19.[/b] What is the sum of the reciprocals of all the (positive integer) factors of $120$ (including $1$ and $120$ itself). [b]p20.[/b] How many ways can you choose $3$ distinct elements of $\{1, 2, 3,...,4000\}$ to make an increasing arithmetic series? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 Taiwan National Olympiad, 3

If positive integers $p,q,r$ are such that the quadratic equation $px^2-qx+r=0$ has two distinct real roots in the open interval $(0,1)$, find the minimum value of $p$.

1985 Traian Lălescu, 1.2

Find the first degree polynomial function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that satisfy the equation $$ f(x-1)=-3x-5-f(2), $$ for all real numbers $ x. $

2014 Nordic, 3

Find all nonnegative integers $a, b, c$ such that $$\sqrt{a} + \sqrt{b} + \sqrt{c} = \sqrt{2014}.$$

1998 All-Russian Olympiad, 1

The angle formed by the rays $y=x$ and $y=2x$ ($x \ge 0$) cuts off two arcs from a given parabola $y=x^2+px+q$. Prove that the projection of one arc onto the $x$-axis is shorter by $1$ than that of the second arc.

1971 IMO Shortlist, 13

Let $ A \equal{} (a_{ij})$, where $ i,j \equal{} 1,2,\ldots,n$, be a square matrix with all $ a_{ij}$ non-negative integers. For each $ i,j$ such that $ a_{ij} \equal{} 0$, the sum of the elements in the $ i$th row and the $ j$th column is at least $ n$. Prove that the sum of all the elements in the matrix is at least $ \frac {n^2}{2}$.

2023 Polish Junior Math Olympiad First Round, 5.

Positive numbers $a$, $b$, $c$ satisfy the inequalities \[a + b \geq ab, \quad b + c \geq bc,\quad\text{and}\quad c+ a \geq ca.\] Prove that $\displaystyle a + b + c \geq \frac34abc$.

2006 AMC 12/AHSME, 24

The expression \[ (x \plus{} y \plus{} z)^{2006} \plus{} (x \minus{} y \minus{} z)^{2006} \]is simplified by expanding it and combining like terms. How many terms are in the simplified expression? $ \textbf{(A) } 6018 \qquad \textbf{(B) } 671,676 \qquad \textbf{(C) } 1,007,514 \qquad \textbf{(D) } 1,008,016 \qquad \textbf{(E) } 2,015,028$

2004 District Olympiad, 4

Let $A=(a_{ij})\in \mathcal{M}_p(\mathbb{C})$ such that $a_{12}=a_{23}=\ldots=a_{p-1,p}=1$ and $a_{ij}=0$ for any other entry. a)Prove that $A^{p-1}\neq O_p$ and $A^p=O_p$. b)If $X\in \mathcal{M}_{p}(\mathbb{C})$ and $AX=XA$, prove that there exist $a_1,a_2,\ldots,a_p\in \mathbb{C}$ such that: \[X=\left( \begin{array}{ccccc} a_1 & a_2 & a_3 & \ldots & a_p \\ 0 & a_1 & a_2 & \ldots & a_{p-1} \\ 0 & 0 & a_1 & \ldots & a_{p-2} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & a_1 \end{array} \right)\] c)If there exist $B,C\in \mathcal{M}_p(\mathbb{C})$ such that $(I_p+A)^n=B^n+C^n,\ (\forall)n\in \mathbb{N}^*$, prove that $B=O_p$ or $C=O_p$.