This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2023 Olimphíada, 2

The Fibonacci sequence is defined by $F_1 = F_2 = 1$ and $F_{n+2} = F_{n+1}+F_n$ for every integer $n$. A sequence $(a_n)$ of integers is said to be $\textit{phirme}$ if there is a fixed integer $k$ such that $a_n + a_{n+1} = F_{n+k}$ for all $n \geq 1$. Show that if $(a_n)$ is a $\textit{phirme}$ sequence, then there exists an integer $c$ such that $$a_n = F_{n+k-2} + (-1)^nc.$$

1999 Canada National Olympiad, 1

Find all real solutions to the equation $4x^2 - 40 \lfloor x \rfloor + 51 = 0$.

2020 Ukraine Team Selection Test, 2

Tags: algebra
Let $n\geqslant 2$ be a positive integer and $a_1,a_2, \ldots ,a_n$ be real numbers such that \[a_1+a_2+\dots+a_n=0.\] Define the set $A$ by \[A=\left\{(i, j)\,|\,1 \leqslant i<j \leqslant n,\left|a_{i}-a_{j}\right| \geqslant 1\right\}\] Prove that, if $A$ is not empty, then \[\sum_{(i, j) \in A} a_{i} a_{j}<0.\]

2012 Waseda University Entrance Examination, 1

Answer the following questions: (1) For complex numbers $\alpha ,\ \beta$, if $\alpha \beta =0$, then prove that $\alpha =0$ or $\beta =0$. (2) For complex number $\alpha$, if $\alpha^2$ is a positive real number, then prove that $\alpha$ is a real number. (3) For complex numbers $\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_{2n+1}\ (n=1,\ 2,\ \cdots)$, assume that $\alpha_1\alpha_2,\ \cdots ,\ \alpha_k\alpha_{k+1},\ \cdots,\ \alpha_{2n}\alpha_{2n+1}$ and $\alpha_{2n+1}\alpha_1$ are all positive real numbers. Prove that $\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_{2n+1}$ are all real numbers.

2012 ELMO Shortlist, 3

Prove that any polynomial of the form $1+a_nx^n + a_{n+1}x^{n+1} + \cdots + a_kx^k$ ($k\ge n$) has at least $n-2$ non-real roots (counting multiplicity), where the $a_i$ ($n\le i\le k$) are real and $a_k\ne 0$. [i]David Yang.[/i]

1963 IMO Shortlist, 1

Find all real roots of the equation \[ \sqrt{x^2-p}+2\sqrt{x^2-1}=x \] where $p$ is a real parameter.

2019 Thailand TSTST, 3

Let $n\geq 2$ be an integer. Determine the number of terms in the polynomial $$\prod_{1\leq i< j\leq n}(x_i+x_j)$$ whose coefficients are odd integers.

2016 BMT Spring, 7

Tags: algebra
Suppose $f(x, y)$ is a function that takes in two integers and outputs a real number, such that it satisfies $$f(x, y) = \frac{f(x, y + 1) + f(x, y - 1)}{2}$$ $$f(x, y) = \frac{f(x + 1, y) + f(x - 1, y)}{2}$$ What is the minimum number of pairs $(x, y)$ we need to evaluate to be able to uniquely determine $f$?

1986 IMO Shortlist, 4

Provided the equation $xyz = p^n(x + y + z)$ where $p \geq 3$ is a prime and $n \in \mathbb{N}$. Prove that the equation has at least $3n + 3$ different solutions $(x,y,z)$ with natural numbers $x,y,z$ and $x < y < z$. Prove the same for $p > 3$ being an odd integer.

1988 IMO Longlists, 25

Tags: algebra , function
Find the total number of different integers the function \[ f(x) = \left[x \right] + \left[2 \cdot x \right] + \left[\frac{5 \cdot x}{3} \right] + \left[3 \cdot x \right] + \left[4 \cdot x \right] \] takes for $0 \leq x \leq 100.$

2011 Austria Beginners' Competition, 3

Let $x, y$ be positive real numbers with $x + y + xy= 3$. Prove that$$x + y\ge 2.$$ When does equality holds? (K. Czakler, GRG 21, Vienna)

2006 MOP Homework, 6

Tags: algebra , function
Let $\mathbb{R}*$ denote the set of nonzero real numbers. Find all functions $f:\mathbb{R}* \rightarrow \mathbb{R}*$ such that $f(x^2+y)=f(f(x))+\frac{f(xy)}{f(x)}$ for every pair of nonzero real numbers $x$ and $y$ with $x^2+y \neq 0$.

2018 Malaysia National Olympiad, A5

Find the positive integer $n$ that satisfi es the equation $$n^2 - \lfloor \sqrt{n} \rfloor = 2018$$

2022 Bulgarian Spring Math Competition, Problem 9.1

Let $f(x)$ be a quadratic function with integer coefficients. If we know that $f(0)$, $f(3)$ and $f(4)$ are all different and elements of the set $\{2, 20, 202, 2022\}$, determine all possible values of $f(1)$.

2002 India IMO Training Camp, 15

Let $x_1,x_2,\ldots,x_n$ be arbitrary real numbers. Prove the inequality \[ \frac{x_1}{1+x_1^2} + \frac{x_2}{1+x_1^2 + x_2^2} + \cdots + \frac{x_n}{1 + x_1^2 + \cdots + x_n^2} < \sqrt{n}. \]

2021 Austrian MO Beginners' Competition, 1

Tags: sum , cool , easy , algebra
The pages of a notebook are numbered consecutively so that the numbers $1$ and $2$ are on the second sheet, numbers $3$ and $4$, and so on. A sheet is torn out of this notebook. All of the remaining page numbers are addedand have sum $2021$. (a) How many pages could the notebook originally have been? (b) What page numbers can be on the torn sheet? (Walther Janous)

2015 Junior Balkan Team Selection Tests - Romania, 2

Find all the triplets of real numbers $(x , y , z)$ such that : $y=\frac{x^3+12x}{3x^2+4}$ , $z=\frac{y^3+12y}{3y^2+4}$ , $x=\frac{z^3+12z}{3z^2+4}$

1967 IMO Longlists, 28

Find values of the parameter $u$ for which the expression \[y = \frac{ \tan(x-u) + \tan(x) + \tan(x+u)}{ \tan(x-u)\tan(x)\tan(x+u)}\] does not depend on $x.$

2016 IFYM, Sozopol, 6

Find all polynomials $P\in \mathbb{Q}[x]$, which satisfy the following equation: $P^2 (n)+\frac{1}{4}=P(n^2+\frac{1}{4})$ for $\forall$ $n\in \mathbb{N}$.

2002 Regional Competition For Advanced Students, 2

Solve the following system of equations over the real numbers: $2x_1 = x_5 ^2 - 23$ $4x_2 = x_1 ^2 + 7$ $6x_3 = x_2 ^2 + 14$ $8x_4 = x_3 ^2 + 23$ $10x_5 = x_4 ^2 + 34$

2013 Costa Rica - Final Round, A1

Let the real numbers $x, y, z$ be such that $x + y + z = 0$. Prove that $$6(x^3 + y^3 + z^3)^2 \le (x^2 + y^2 + z^2)^3.$$

MBMT Team Rounds, 2019

[hide=D stands for Descartes, L stands for Leibniz]they had two problem sets under those two names[/hide] [b]D1.[/b] What is the solution to the equation $3 \cdot x \cdot 5 = 4 \cdot 5 \cdot 6$? [b]D2.[/b] Mr. Rose is making Platonic solids! If there are five different types of Platonic solids, and each Platonic solid can be one of three colors, how many different colored Platonic solids can Mr. Rose make? [b]D3.[/b] What fraction of the multiples of $5$ between $1$ and $100$ inclusive are also multiples of $20$? [b]D4.[/b] What is the maximum number of times a circle can intersect a triangle? [b]D5 / L1.[/b] At an interesting supermarket, the nth apple you purchase costs $n$ dollars, while pears are $3$ dollars each. Given that Layla has exactly enough money to purchase either $k$ apples or $2k$ pears for $k > 0$, how much money does Layla have? [b]D6 / L3.[/b] For how many positive integers $1 \le n \le 10$ does there exist a prime $p$ such that the sum of the digits of $p$ is $n$? [b]D7 / L2.[/b] Real numbers $a, b, c$ are selected uniformly and independently at random between $0$ and $1$. What is the probability that $a \ge b \le c$? [b]D8.[/b] How many ordered pairs of positive integers $(x, y)$ satisfy $lcm(x, y) = 500$? [b]D9 / L4.[/b] There are $50$ dogs in the local animal shelter. Each dog is enemies with at least $2$ other dogs. Steven wants to adopt as many dogs as possible, but he doesn’t want to adopt any pair of enemies, since they will cause a ruckus. Considering all possible enemy networks among the dogs, find the maximum number of dogs that Steven can possibly adopt. [b]D10 / L7.[/b] Unit circles $a, b, c$ satisfy $d(a, b) = 1$, $d(b, c) = 2$, and $d(c, a) = 3,$ where $d(x, y)$ is defined to be the minimum distance between any two points on circles $x$ and $y$. Find the radius of the smallest circle entirely containing $a$, $b$, and $c$. [b]D11 / L8.[/b] The numbers $1$ through $5$ are written on a chalkboard. Every second, Sara erases two numbers $a$ and $b$ such that $a \ge b$ and writes $\sqrt{a^2 - b^2}$ on the board. Let M and m be the maximum and minimum possible values on the board when there is only one number left, respectively. Find the ordered pair $(M, m)$. [b]D12 / L9.[/b] $N$ people stand in a line. Bella says, “There exists an assignment of nonnegative numbers to the $N$ people so that the sum of all the numbers is $1$ and the sum of any three consecutive people’s numbers does not exceed $1/2019$.” If Bella is right, find the minimum value of $N$ possible. [b]D13 / L10.[/b] In triangle $\vartriangle ABC$, $D$ is on $AC$ such that $BD$ is an altitude, and $E$ is on $AB$ such that $CE$ is an altitude. Let F be the intersection of $BD$ and $CE$. If $EF = 2FC$, $BF = 8DF$, and $DC = 3$, then find the area of $\vartriangle CDF$. [b]D14 / L11.[/b] Consider nonnegative real numbers $a_1, ..., a_6$ such that $a_1 +... + a_6 = 20$. Find the minimum possible value of $$\sqrt{a^2_1 + 1^2} +\sqrt{a^2_2 + 2^2} +\sqrt{a^2_3 + 3^2} +\sqrt{a^2_4 + 4^2} +\sqrt{a^2_5 + 5^2} +\sqrt{a^2_6 + 6^2}.$$ [b]D15 / L13.[/b] Find an $a < 1000000$ so that both $a$ and $101a$ are triangular numbers. (A triangular number is a number that can be written as $1 + 2 +... + n$ for some $n \ge 1$.) Note: There are multiple possible answers to this problem. You only need to find one. [b]L6.[/b] How many ordered pairs of positive integers $(x, y)$, where $x$ is a perfect square and $y$ is a perfect cube, satisfy $lcm(x, y) = 81000000$? [b]L12.[/b] Given two points $A$ and $B$ in the plane with $AB = 1$, define $f(C)$ to be the incenter of triangle $ABC$, if it exists. Find the area of the region of points $f(f(X))$ where $X$ is arbitrary. [b]L14.[/b] Leptina and Zandar play a game. At the four corners of a square, the numbers $1, 2, 3$, and $4$ are written in clockwise order. On Leptina’s turn, she must swap a pair of adjacent numbers. On Zandar’s turn, he must choose two adjacent numbers $a$ and $b$ with $a \ge b$ and replace $a$ with $ a - b$. Zandar wants to reduce the sum of the numbers at the four corners of the square to $2$ in as few turns as possible, and Leptina wants to delay this as long as possible. If Leptina goes first and both players play optimally, find the minimum number of turns Zandar can take after which Zandar is guaranteed to have reduced the sum of the numbers to $2$. [b]L15.[/b] There exist polynomials $P, Q$ and real numbers $c_0, c_1, c_2, ... , c_{10}$ so that the three polynomials $P, Q$, and $$c_0P^{10} + c_1P^9Q + c_2P^8Q^2 + ... + c_{10}Q^{10}$$ are all polynomials of degree 2019. Suppose that $c_0 = 1$, $c_1 = -7$, $c_2 = 22$. Find all possible values of $c_{10}$. Note: The answer(s) are rational numbers. It suffices to give the prime factorization(s) of the numerator(s) and denominator(s). PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 Germany Team Selection Test, 1

Given the positive numbers $a$ and $b$ and the natural number $n$, find the greatest among the $n + 1$ monomials in the binomial expansion of $\left(a+b\right)^n$.

2011 Brazil Team Selection Test, 4

Denote by $\mathbb{Q}^+$ the set of all positive rational numbers. Determine all functions $f : \mathbb{Q}^+ \mapsto \mathbb{Q}^+$ which satisfy the following equation for all $x, y \in \mathbb{Q}^+:$ \[f\left( f(x)^2y \right) = x^3 f(xy).\] [i]Proposed by Thomas Huber, Switzerland[/i]

2020 Vietnam Team Selection Test, 1

Tags: algebra , sum , min
Given that $n> 2$ is a positive integer and a sequence of positive integers $a_1 <a_2 <...<a_n$. In the subsets of the set $\{1,2,..., n\} $, there a subset $X$ such that $| \sum_{i \notin X} a_i -\sum_{i \in X} a_i |$ is the smallest . Prove that there exists a sequence of positive integers $0<b_1 <b_2 <...<b_n$ such that $\sum_{i \notin X} b_i= \sum_{i \in X} b_i$. In case this doesn't make sense, have a look at [url=https://drive.google.com/file/d/1xoBhJlG0xHwn6zAAA7AZDoaAqzZue-73/view]original wording in Vietnamese[/url].