Found problems: 15925
2020 South East Mathematical Olympiad, 4
Let $0\leq a_1\leq a_2\leq \cdots\leq a_{n-1}\leq a_n $ and $a_1+a_2+\cdots+a_n=1.$ Prove that: For any non-negative numbers $x_1,x_2,\cdots,x_n ; y_1, y_2,\cdots, y_n$ , have
$$\left(\sum_{i=1}^n a_ix_i - \prod_{i=1}^n x_i^{a_i}\right)
\left(\sum_{i=1}^n a_iy_i - \prod_{i=1}^n y_i^{a_i}\right) \leq
a_n^2\left(n\sqrt{\sum_{i=1}^n x_i\sum_{i=1}^n y_i} - \sum_{i=1}^n\sqrt{x_i} \sum_{i=1}^n\sqrt{y_i}\right)^2.$$
2011 Laurențiu Duican, 4
Consider a finite field $ K. $
[b]a)[/b] Prove that there is an element $ k $ in $ K $ having the property that the polynom $ X^3+k $ is irreducible in $ K[X], $ if $ \text{ord} (K)\equiv 1\pmod {12}. $
[b]b)[/b] Is [b]a)[/b] still true if, intead, $ \text{ord} (K) \equiv -1\pmod{12} ? $
[i]Dorel Miheț[/i]
2020 CMIMC Algebra & Number Theory, 4
For all real numbers $x$, let $P(x)=16x^3 - 21x$. What is the sum of all possible values of $\tan^2\theta$, given that $\theta$ is an angle satisfying \[P(\sin\theta) = P(\cos\theta)?\]
2023 LMT Fall, 22
Consider all pairs of points $(a,b,c)$ and $(d,e, f )$ in the $3$-D coordinate system with $ad +be +c f = -2023$. What is the least positive integer that can be the distance between such a pair of points?
[i]Proposed by William Hua[/i]
1974 IMO Shortlist, 9
Let $x, y, z$ be real numbers each of whose absolute value is different from $\frac{1}{\sqrt 3}$ such that $x + y + z = xyz$. Prove that
\[\frac{3x - x^3}{1-3x^2} + \frac{3y - y^3}{1-3y^2} + \frac{3z -z^3}{1-3z^2} = \frac{3x - x^3}{1-3x^2} \cdot \frac{3y - y^3}{1-3y^2} \cdot \frac{3z - z^3}{1-3z^2}\]
2010 Stanford Mathematics Tournament, 8
Let $P(x)$ be a polynomial of degree $n$ such that $P(x)=3^k$ for $0\le k \le n$. Find $P(n+1)$
2018 Tuymaada Olympiad, 7
Prove the inequality $$(x^3+2y^2+3z)(4y^3+5z^2+6x)(7z^3+8x^2+9y)\geq720(xy+yz+xz)$$ for $x, y, z \geq 1$.
[i]Proposed by K. Kokhas[/i]
2012 Kazakhstan National Olympiad, 1
Solve the equation $p+\sqrt{q^{2}+r}=\sqrt{s^{2}+t}$ in prime numbers.
1987 Tournament Of Towns, (134) 3
We are given two three-litre bottles, one containing $1$ litre of water and the other containing $1$ litre of $2\%$ salt solution . One can pour liquids from one bottle to the other and then mix them to obtain solutions of different concentration . Can one obtain a $1 . 5\%$ solution of salt in the bottle which originally contained water?
(S . Fomin, Leningrad),
2017 Azerbaijan Team Selection Test, 3
Find all functions $f : \mathbb R\to\mathbb R $ such that \[f(x+yf(x^2))=f(x)+xf(xy)\] for all real numbers $x$ and $y$.
1997 Slovenia National Olympiad, Problem 2
Determine all positive integers $n$ for which there exists a polynomial $p(x)$ of degree $n$ with integer coefficients such that it takes the value $n$ in $n$ distinct integer points and takes the value $0$ at point $0$.
1992 Tournament Of Towns, (326) 3
Let $n, m, k$ be natural numbers, with $m > n$. Which of the numbers is greater:
$$\sqrt{n+\sqrt{m+\sqrt{n+...}}}\,\,\, or \,\,\,\, \sqrt{m+\sqrt{n+\sqrt{m+...}}}\,\, ?$$
Note: Each of the expressions contains $k$ square root signs; $n, m$ alternate within each expression.
(N. Kurlandchik)
1990 USAMO, 2
A sequence of functions $\, \{f_n(x) \} \,$ is defined recursively as follows: \begin{align*}f_1(x) &= \sqrt{x^2 + 48}, \quad \mbox{and} \\ f_{n+1}(x) &= \sqrt{x^2 + 6f_n(x)} \quad \mbox{for } n \geq 1.\end{align*}
(Recall that $\sqrt{\makebox[5mm]{}}$ is understood to represent the positive square root.) For each positive integer $n$, find all real solutions of the equation $\, f_n(x) = 2x \,$.
2014 India PRMO, 17
For a natural number $b$, let $N(b)$ denote the number of natural numbers $a$ for which the equation $x^2 + ax + b = 0$ has integer roots. What is the smallest value of $b$ for which $N(b) = 20$?
2000 Moldova National Olympiad, Problem 1
Let $a,b,c$ be real numbers with $a,c\ne0$. Prove that if $r$ is a real root of $ax^2+bx+c=0$ and $s$ a real root of $-ax^2+bx+c=0$, then there is a root of a
$\frac a2x^2+bx+c=0$ between $r$ and $s$.
2014 JBMO Shortlist, 3
For positive real numbers $a,b,c$ with $abc=1$ prove that $\left(a+\frac{1}{b}\right)^{2}+\left(b+\frac{1}{c}\right)^{2}+\left(c+\frac{1}{a}\right)^{2}\geq 3(a+b+c+1)$
2012 Mid-Michigan MO, 7-9
[b]p1.[/b] We say that integers $a$ and $b$ are [i]friends [/i] if their product is a perfect square. Prove that if $a$ is a friend of $b$, then $a$ is a friend of $gcd (a, b)$.
[b]p2.[/b] On the island of knights and liars, a traveler visited his friend, a knight, and saw him sitting at a round table with five guests.
"I wonder how many knights are among you?" he asked.
" Ask everyone a question and find out yourself" advised him one of the guests.
"Okay. Tell me one: Who are your neighbors?" asked the traveler.
This question was answered the same way by all the guests.
"This information is not enough!" said the traveler.
"But today is my birthday, do not forget it!" said one of the guests.
"Yes, today is his birthday!" said his neighbor.
Now the traveler was able to find out how many knights were at the table.
Indeed, how many of them were there if [i]knights always tell the truth and liars always lie[/i]?
[b]p3.[/b] A rope is folded in half, then in half again, then in half yet again. Then all the layers of the rope were cut in the same place. What is the length of the rope if you know that one of the pieces obtained has length of $9$ meters and another has length $4$ meters?
[b]p4.[/b] The floor plan of the palace of the Shah is a square of dimensions $6 \times 6$, divided into rooms of dimensions $1 \times 1$. In the middle of each wall between rooms is a door. The Shah orders his architect to eliminate some of the walls so that all rooms have dimensions $2 \times 1$, no new doors are created, and a path between any two rooms has no more than $N$ doors. What is the smallest value of $N$ such that the order could be executed?
[b]p5.[/b] There are $10$ consecutive positive integers written on a blackboard. One number is erased. The sum of remaining nine integers is $2011$. Which number was erased?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2013 Tournament of Towns, 5
A quadratic trinomial with integer coefficients is called [i]admissible [/i] if its leading coefficient is $1$, its roots are integers and the absolute values of coefficients do not exceed $2013$. Basil has summed up all admissible quadratic trinomials. Prove that the resulting trinomial has no real roots.
2012 Princeton University Math Competition, B1
Find the largest $n$ such that the last nonzero digit of $n!$ is $1$.
2019 CMIMC, 7
For all positive integers $n$, let
\[f(n) = \sum_{k=1}^n\varphi(k)\left\lfloor\frac nk\right\rfloor^2.\] Compute $f(2019) - f(2018)$. Here $\varphi(n)$ denotes the number of positive integers less than or equal to $n$ which are relatively prime to $n$.
KoMaL A Problems 2017/2018, A. 721
Let $n\ge 2$ be a positive integer, and suppose $a_1,a_2,\cdots ,a_n$ are positive real numbers whose sum is $1$ and whose squares add up to $S$. Prove that if $b_i=\tfrac{a^2_i}{S} \;(i=1,\cdots ,n)$, then for every $r>0$, we have $$\sum_{i=1}^n \frac{a_i}{{(1-a_i)}^r}\le \sum_{i=1}^n
\frac{b_i}{{(1-b_i)}^r}.$$
2010 All-Russian Olympiad Regional Round, 10.5
Non-zero numbers $a, b, c$ are such that $ax^2+bx+c > cx$ for any $x$.
Prove that $cx^2-bx + a > cx-b$ for any $x$.
2019 BMT Spring, 1
Find the maximum integral value of $k$ such that $0 \le k \le 2019$ and $|e^{2\pi i \frac{k}{2019}} - 1|$ is maximal.
1999 Romania National Olympiad, 2b
Let $a, b, c$ be positive real numbers such that $ab +be + ba \le 3abc$. Prove that
$$a^3+b^3+c^3 \ge a+b+c.$$
Mid-Michigan MO, Grades 5-6, 2014
[b]p1.[/b] Find any integer solution of the puzzle: $WE+ST+RO+NG=128$
(different letters mean different digits between $1$ and $9$).
[b]p2.[/b] A $5\times 6$ rectangle is drawn on the piece of graph paper (see the figure below). The side of each square on the graph paper is $1$ cm long. Cut the rectangle along the sides of the graph squares in two parts whose areas are equal but perimeters are different by $2$ cm.
$\begin{tabular}{|l|l|l|l|l|l|}
\hline
& & & & & \\ \hline
& & & & & \\ \hline
& & & & & \\ \hline
& & & & & \\ \hline
\end{tabular}$
[b]p3.[/b] Three runners started simultaneously on a $1$ km long track. Each of them runs the whole distance at a constant speed. Runner $A$ is the fastest. When he runs $400$ meters then the total distance run by runners $B$ and $C$ together is $680$ meters. What is the total combined distance remaining for runners $B$ and $C$ when runner $A$ has $100$ meters left?
[b]p4.[/b] There are three people in a room. Each person is either a knight who always tells the truth or a liar who always tells lies. The first person said «We are all liars». The second replied «Only you are a liar». Is the third person a liar or a knight?
[b]p5.[/b] A $5\times 8$ rectangle is divided into forty $1\times 1$ square boxes (see the figure below). Choose 24 such boxes and one diagonal in each chosen box so that these diagonals don't have common points.
$\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline
& & & & & & & \\ \hline
& & & & & & & \\ \hline
& & & & & & & \\ \hline
& & & & & & & \\ \hline
\end{tabular}$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].