Found problems: 15925
2021 European Mathematical Cup, 4
Find all positive integers $d$ for which there exist polynomials $P(x)$ and $Q(x)$ with real coefficients such that degree of $P$ equals $d$ and
$$P(x)^2+1=(x^2+1)Q(x)^2.$$
2005 Morocco TST, 3
Let $a_1,a_2,\ldots$ be an infinite sequence of real numbers, for which there exists a real number $c$ with $0\leq a_i\leq c$ for all $i$, such that \[\left\lvert a_i-a_j \right\rvert\geq \frac{1}{i+j} \quad \text{for all }i,\ j \text{ with } i \neq j. \] Prove that $c\geq1$.
2021 Abels Math Contest (Norwegian MO) Final, 2b
If $a_1,\cdots,a_n$ and $b_1,\cdots,b_n$ are real numbers satisfying $a_1^2+\cdots+a_n^2 \le 1$ and $b_1^2+\cdots+b_n^2 \le 1$ , show that:
$$(1-(a_1^2+\cdots+a_n^2))(1-(b_1^2+\cdots+b_n^2)) \le (1-(a_1b_1+\cdots+a_nb_n))^2$$
2000 Putnam, 3
Let $f(t) = \displaystyle\sum_{j=1}^{N} a_j \sin (2\pi jt)$, where each $a_j$ is areal and $a_N$ is not equal to $0$.
Let $N_k$ denote the number of zeroes (including multiplicites) of $\dfrac{d^k f}{dt^k}$. Prove that \[ N_0 \le N_1 \le N_2 \le \cdots \text { and } \lim_{k \rightarrow \infty} N_k = 2N. \] [color=green][Only zeroes in [0, 1) should be counted.][/color]
2008 Princeton University Math Competition, B5
How many real roots do $x^5 +3x^4 -4x^3 -8x^2 +6x-1$ and $x^5-3x^4 -2x^3 -3x^2 -6x+1$ share?
1995 Czech and Slovak Match, 1
Let $ a_1\equal{}2, a_2\equal{}5$ and $ a_{n\plus{}2}\equal{}(2\minus{}n^2)a_{n\plus{}1}\plus{} (2\plus{}n^2)a_n$ for $ n\geq 1$. Do there exist $ p,q,r$ so that $ a_pa_q \equal{}a_r$?
2020 CHMMC Winter (2020-21), 1
[i](5 pts)[/i] Let $n$ be a positive integer, $K = \{1, 2, \dots, n\}$, and $\sigma : K \rightarrow K$ be a function with the property that $\sigma(i) = \sigma(j)$ if and only if $i = j$ (in other words, $\sigma$ is a \textit{bijection}). Show that there is a positive integer $m$ such that
\[ \underbrace{\sigma(\sigma( \dots \sigma(i) \dots ))}_\textrm{$m$ times} = i \]
for all $i \in K$.
2022 Brazil Team Selection Test, 2
For each integer $n\ge 1,$ compute the smallest possible value of \[\sum_{k=1}^{n}\left\lfloor\frac{a_k}{k}\right\rfloor\] over all permutations $(a_1,\dots,a_n)$ of $\{1,\dots,n\}.$
[i]Proposed by Shahjalal Shohag, Bangladesh[/i]
2014-2015 SDML (High School), 8
Consider the polynomial $$P\left(t\right)=t^3-29t^2+212t-399.$$ Find the product of all positive integers $n$ such that $P\left(n\right)$ is the sum of the digits of $n$.
1969 IMO Longlists, 15
$(CZS 4)$ Let $K_1,\cdots , K_n$ be nonnegative integers. Prove that $K_1!K_2!\cdots K_n! \ge \left[\frac{K}{n}\right]!^n$, where $K = K_1 + \cdots + K_n$
2001 Moldova National Olympiad, Problem 7
Set $a_n=\frac{2n}{n^4+3n^2+4},n\in\mathbb N$. Prove that the sequence $S_n=a_1+a_2+\ldots+a_n$ is upperbounded and lowerbounded and find its limit as $n\to\infty$.
2015 Regional Olympiad of Mexico Southeast, 6
If we separate the numbers $1,2,3,4,\dots, 100$ in two lists with
$$a_1<a_2<\cdots<a_{50}$$ and $$b_1>b_2>\cdots>b_{50}$$
Prove that, no matter how we do the separation,
$$\vert a_1-b_1\vert +\vert a_2-b_2\vert+\cdots +\vert a_{50}-b_{50}\vert=2500$$
2021 Stanford Mathematics Tournament, R2
[b]p5.[/b] Find the number of three-digit integers that contain at least one $0$ or $5$. The leading digit of the three-digit integer cannot be zero.
[b]p6.[/b] What is the sum of the solutions to $\frac{x+8}{5x+7} =\frac{x+8}{7x+5}$
[b]p7.[/b] Let $BC$ be a diameter of a circle with center $O$ and radius $4$. Point $A$ is on the circle such that $\angle AOB = 45^o$. Point $D$ is on the circle such that line segment$ OD$ intersects line segment $AC$ at $E$ and $OD$ bisects $\angle AOC$. Compute the area of $ADE$, which is enclosed by line segments $AE$ and $ED$ and minor arc $AD$.
[b]p8. [/b] William is a bacteria farmer. He would like to give his fiance$ 2021$ bacteria as a wedding gift. Since he is an intelligent and frugal bacteria farmer, he would like to add the least amount of bacteria on his favorite infinite plane petri dish to produce those $2021$ bacteria.
The infinite plane petri dish starts off empty and William can add as many bacteria as he wants each day. Each night, all the bacteria reproduce through binary fission, splitting into two. If he has infinite amount of time before his wedding day, how many bacteria should he add to the dish in total to use the least number of bacteria to accomplish his nuptial goals?
PS. You should use hide for answers Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 Kosovo National Mathematical Olympiad, 2
Is it possible that by using the following transformations:
\[ f(x) \mapsto x^2 \cdot f \left(\frac{1}{x}+1 \right) \ \ \ \text{or} \ \ \ f(x) \mapsto (x-1)^2 \cdot f\left(\frac{1}{x-1} \right)\]
the function $f(x)=x^2+5x+4$ is sent to the function $g(x)=x^2+10x+8$ ?
1997 All-Russian Olympiad Regional Round, 10.5
Given a set of $100$ different numbers such that if each number in the set is replaced by the sum of the others, the same set will be obtained. Prove that the product of numbers in a set is positive.
2013 Austria Beginners' Competition, 3
Let $a$ and $ b$ be real numbers with $0\le a, b\le 1$. Prove that $$\frac{a}{b + 1}+\frac{b}{a + 1}\le 1$$ When does equality holds?
(K. Czakler, GRG 21, Vienna)
2002 German National Olympiad, 1
Find all real numbers $a,b$ satisfying the following system of equations
\begin{align*}
2a^2 -2ab+b^2 &=a\\
4a^2 -5ab +2b^2 & =b.
\end{align*}
2006 Team Selection Test For CSMO, 1
Find all the pairs of positive numbers such that the last
digit of their sum is 3, their difference is a primer number and
their product is a perfect square.
2004 Harvard-MIT Mathematics Tournament, 4
Let $f(x)=\cos(\cos(\cos(\cos(\cos(\cos(\cos(\cos(x))))))))$, and suppose that the number $a$ satisfies the equation $a=\cos a$. Express $f'(a)$ as a polynomial in $a$.
2016 Saudi Arabia IMO TST, 2
Find all pairs of polynomials $P(x),Q(x)$ with integer coefficients such that $P(Q(x)) = (x - 1)(x - 2)...(x - 9)$ for all real numbers $x$
ABMC Online Contests, 2020 Nov
[b]p1.[/b] A large square is cut into four smaller, congruent squares. If each of the smaller squares has perimeter $4$, what was the perimeter of the original square?
[b]p2.[/b] Pie loves to bake apples so much that he spends $24$ hours a day baking them. If Pie bakes a dozen apples in one day, how many minutes does it take Pie to bake one apple, on average?
[b]p3.[/b] Bames Jond is sent to spy on James Pond. One day, Bames sees James type in his $4$-digit phone password. Bames remembers that James used the digits $0$, $5$, and $9$, and no other digits, but he does not remember the order. How many possible phone passwords satisfy this condition?
[b]p4.[/b] What do you get if you square the answer to this question, add $256$ to it, and then divide by $32$?
[b]p5.[/b] Chloe the Horse and Flower the Chicken are best friends. When Chloe gets sad for any reason, she calls Flower, so Chloe must remember Flower's $3$ digit phone number, which can consist of any digits $0-5$. Given that the phone number's digits are unique and add to $5$, the number does not start with $0$, and the $3$ digit number is prime, what is the sum of all possible phone numbers?
[b]p6.[/b] Anuj has a circular pizza with diameter $A$ inches, which is cut into $B$ congruent slices, where $A$,$B$ are positive integers. If one of Anuj's pizza slices has a perimeter of $3\pi + 30$ inches, find $A + B$.
[b]p7.[/b] Bob really likes to study math. Unfortunately, he gets easily distracted by messages sent by friends. At the beginning of every minute, there is an $\frac{6}{10}$ chance that he will get a message from a friend. If Bob does get a message from a friend, there is a $\frac{9}{10}$ chance that he will look at the message, causing him to waste $30$ seconds before resuming his studying. If Bob doesn't get a message from a friend, there is a $\frac{3}{10}$ chance Bob will still check his messages hoping for a message from his friends, wasting $10$ seconds before he resumes his studying. What is the expected number of minutes in $100$ minutes for which Bob will be studying math?
[b]p8.[/b] Suppose there is a positive integer $n$ with $225$ distinct positive integer divisors. What is the minimum possible number of divisors of n that are perfect squares?
[b]p9.[/b] Let $a, b, c$ be positive integers. $a$ has $12$ divisors, $b$ has $8$ divisors, $c$ has $6$ divisors, and $lcm(a, b, c) = abc$. Let $d$ be the number of divisors of $a^2bc$. Find the sum of all possible values of $d$.
[b]p10.[/b] Let $\vartriangle ABC$ be a triangle with side lengths $AB = 17$, $BC = 28$, $AC = 25$. Let the altitude from $A$ to $BC$ and the angle bisector of angle $B$ meet at $P$. Given the length of $BP$ can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a$, $b$, $c$ where $gcd(a, c) = 1$ and $b$ is not divisible by the square of any prime, find $a + b + c$.
[b]p11.[/b] Let $a$, $b$, and $c$ be the roots of the cubic equation $x^3-5x+3 = 0$. Let $S = a^4b+ab^4+a^4c+ac^4+b^4c+bc^4$. Find $|S|$.
[b]p12.[/b] Call a number palindromeish if changing a single digit of the number into a different digit results in a new six-digit palindrome. For example, the number $110012$ is a palindromeish number since you can change the last digit into a $1$, which results in the palindrome $110011$. Find the number of $6$ digit palindromeish numbers.
[b]p13.[/b] Let $P(x)$ be a polynomial of degree $3$ with real coecients and leading coecient $1$. Let the roots of $P(x)$ be $a$, $b$, $c$. Given that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}= 4$ and $a^2 + b^2 + c^2 = 36$, the coefficient of $x^2$ is negative, and $P(1) = 2$, let the $S$ be the sum of possible values of $P(0)$. Then $|S|$ can be expressed as $\frac{a + b\sqrt{c}}{d}$ for positive integers $a$, $b$, $c$, $d$ such that $gcd(a, b, d) = 1$ and $c$ is not divisible by the square of any prime. Find $a + b + c + d$.
[b]p14.[/b] Let $ABC$ be a triangle with side lengths $AB = 7$, $BC = 8$, $AC = 9$. Draw a circle tangent to $AB$ at $B$ and passing through $C$. Let the center of the circle be $O$. The length of $AO$ can be expressed as $\frac{a\sqrt{b}}{c\sqrt{d}}$ for positive integers $a$, $b$, $c$, $d$ where $gcd(a, c) = gcd(b, d) = 1$ and $b$,$ d$ are not divisible by the square of any prime. Find $a + b + c + d$.
[b]p15.[/b] Many students in Mr. Noeth's BC Calculus class missed their first test, and to avoid taking a makeup, have decided to never leave their houses again. As a result, Mr. Noeth decides that he will have to visit their houses to deliver the makeup tests. Conveniently, the $17$ absent students in his class live in consecutive houses on the same street. Mr. Noeth chooses at least three of every four people in consecutive houses to take a makeup. How many ways can Mr. Noeth select students to take makeups?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1991 Polish MO Finals, 1
On the Cartesian plane consider the set $V$ of all vectors with integer coordinates. Determine all functions $f : V \rightarrow \mathbb{R}$ satisfying the conditions:
(i) $f(v) = 1$ for each of the four vectors $v \in V$ of unit length.
(ii) $f(v+w) = f(v)+f(w)$ for every two perpendicular vectors $v, w \in V$
(Zero vector is considered to be perpendicular to every vector).
DMM Individual Rounds, 2012
[b]p1.[/b] Vivek has three letters to send out. Unfortunately, he forgets which letter is which after sealing the envelopes and before putting on the addresses. He puts the addresses on at random sends out the letters anyways. What are the chances that none of the three recipients get their intended letter?
[b]p2.[/b] David is a horrible bowler. Luckily, Logan and Christy let him use bumpers. The bowling lane is $2$ meters wide, and David's ball travels a total distance of $24$ meters. How many times did David's bowling ball hit the bumpers, if he threw it from the middle of the lane at a $60^o$ degree angle to the horizontal?
[b]p3.[/b] Find $\gcd \,(212106, 106212)$.
[b]p4.[/b] Michael has two fair dice, one six-sided (with sides marked $1$ through $6$) and one eight-sided (with sides marked $1-8$). Michael play a game with Alex: Alex calls out a number, and then Michael rolls the dice. If the sum of the dice is equal to Alex's number, Michael gives Alex the amount of the sum. Otherwise Alex wins nothing. What number should Alex call to maximize his expected gain of money?
[b]p5.[/b] Suppose that $x$ is a real number with $\log_5 \sin x + \log_5 \cos x = -1$. Find $$|\sin^2 x \cos x + \cos^2 x \sin x|.$$
[b]p6.[/b] What is the volume of the largest sphere that FIts inside a regular tetrahedron of side length $6$?
[b]p7.[/b] An ant is wandering on the edges of a cube. At every second, the ant randomly chooses one of the three edges incident at one vertex and walks along that edge, arriving at the other vertex at the end of the second. What is the probability that the ant is at its starting vertex after exactly $6$ seconds?
[b]p8.[/b] Determine the smallest positive integer $k$ such that there exist $m, n$ non-negative integers with $m > 1$ satisfying $$k = 2^{2m+1} - n^2.$$
[b]p9.[/b] For $A,B \subset Z$ with $A,B \ne \emptyset$, define $A + B = \{a + b|a \in A, b \in B\}$. Determine the least $n$ such that there exist sets $A,B$ with $|A| = |B| = n$ and $A + B = \{0, 1, 2,..., 2012\}$.
[b]p10.[/b] For positive integers $n \ge 1$, let $\tau (n)$ and $\sigma (n)$ be, respectively, the number of and sum of the positive integer divisors of $n$ (including $1$ and $n$). For example, $\tau (1) = \sigma (1) = 1$ and $\tau (6) = 4$, $\sigma (6) = 12$. Find the number of positive integers $n \le 100$ such that
$$\sigma (n) \le (\sqrt{n} - 1)^2 +\tau (n)\sqrt{n}.$$
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024 Turkey EGMO TST, 4
Let $(a_n)_{n=1}^{\infty}$ be a strictly increasing sequence such that inequality
$$a_n(a_n-2a_{n-1})+a_{n-1}(a_{n-1}-2a_{n-2})\geq 0$$
holds for all $n \geq 3$. Prove that for all $n\geq2$ the inequality
$$a_n \geq a_{n-1}+a_{n-2}+\dots+a_1$$
holds as well.
2018 Caucasus Mathematical Olympiad, 4
Morteza places a function $[0,1]\to [0,1]$ (that is a function with domain [0,1] and values from [0,1]) in each cell of an $n \times n$ board. Pavel wants to place a function $[0,1]\to [0,1]$ to the left of each row and below each column (i.e. to place $2n$ functions in total) so that the following condition holds for any cell in this board:
If $h$ is the function in this cell, $f$ is the function below its column, and $g$ is the function to the left of its row, then $h(x) = f(g(x))$ for all $x \in [0, 1]$.
Prove that Pavel can always fulfil his plan.