This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1958 AMC 12/AHSME, 41

The roots of $ Ax^2 \plus{} Bx \plus{} C \equal{} 0$ are $ r$ and $ s$. For the roots of \[ x^2 \plus{} px \plus{} q \equal{} 0 \] to be $ r^2$ and $ s^2$, $ p$ must equal: $ \textbf{(A)}\ \frac{B^2 \minus{} 4AC}{A^2}\qquad \textbf{(B)}\ \frac{B^2 \minus{} 2AC}{A^2}\qquad \textbf{(C)}\ \frac{2AC \minus{} B^2}{A^2}\qquad \\ \textbf{(D)}\ B^2 \minus{} 2C\qquad \textbf{(E)}\ 2C \minus{} B^2$

2006 IMO Shortlist, 2

The sequence of real numbers $a_0,a_1,a_2,\ldots$ is defined recursively by \[a_0=-1,\qquad\sum_{k=0}^n\dfrac{a_{n-k}}{k+1}=0\quad\text{for}\quad n\geq 1.\]Show that $ a_{n} > 0$ for all $ n\geq 1$. [i]Proposed by Mariusz Skalba, Poland[/i]

2002 Mongolian Mathematical Olympiad, Problem 2

Prove that for each $n\in\mathbb N$ the polynomial $(x^2+x)^{2^n}+1$ is irreducible over the polynomials with integer coefficients.

2021-IMOC, A6

Let $n$ be some positive integer and $a_1 , a_2 , \dots , a_n$ be real numbers. Denote $$S_0 = \sum_{i=1}^{n} a_i^2 , \hspace{1cm} S_1 = \sum_{i=1}^{n} a_ia_{i+1} , \hspace{1cm} S_2 = \sum_{i=1}^{n} a_ia_{i+2},$$ where $a_{n+1} = a_1$ and $a_{n+2} = a_2.$ 1. Show that $S_0 - S_1 \geq 0$. 2. Show that $3$ is the minimum value of $C$ such that for any $n$ and $a_1 , a_2 , \dots , a_n,$ there holds $C(S_0 - S_1) \geq S_1 - S_2$.

LMT Team Rounds 2010-20, 2015

[hide=Intro]The answers to each of the ten questions in this section are integers containing only the digits $ 1$ through $ 8$, inclusive. Each answer can be written into the grid on the answer sheet, starting from the cell with the problem number, and continuing across or down until the entire answer has been written. Answers may cross dark lines. If the answers are correctly filled in, it will be uniquely possible to write an integer from $ 1$ to $ 8$ in every cell of the grid, so that each number will appear exactly once in every row, every column, and every marked $2$ by $4$ box. You will get $7$ points for every correctly filled answer, and a $15$ point bonus for filling in every gridcell. It will help to work back and forth between the grid and the problems, although every problem is uniquely solvable on its own. Please write clearly within the boxes. No points will be given for a cell without a number, with multiple numbers, or with illegible handwriting.[/hide] [img]https://cdn.artofproblemsolving.com/attachments/9/b/f4db097a9e3c2602b8608be64f06498bd9d58c.png[/img] [b]1 ACROSS:[/b] Jack puts $ 10$ red marbles, $ 8$ green marbles and 4 blue marbles in a bag. If he takes out $11$ marbles, what is the expected number of green marbles taken out? [b]2 DOWN:[/b] What is the closest integer to $6\sqrt{35}$ ? [b]3 ACROSS: [/b]Alan writes the numbers $ 1$ to $64$ in binary on a piece of paper without leading zeroes. How many more times will he have written the digit $ 1$ than the digit $0$? [b]4 ACROSS:[/b] Integers a and b are chosen such that $-50 < a, b \le 50$. How many ordered pairs $(a, b)$ satisfy the below equation? $$(a + b + 2)(a + 2b + 1) = b$$ [b]5 DOWN: [/b]Zach writes the numbers $ 1$ through $64$ in binary on a piece of paper without leading zeroes. How many times will he have written the two-digit sequence “$10$”? [b]6 ACROSS:[/b] If you are in a car that travels at $60$ miles per hour, $\$1$ is worth $121$ yen, there are $8$ pints in a gallon, your car gets $10$ miles per gallon, a cup of coffee is worth $\$2$, there are 2 cups in a pint, a gallon of gas costs $\$1.50$, 1 mile is about $1.6$ kilometers, and you are going to a coffee shop 32 kilometers away for a gallon of coffee, how much, in yen, will it cost? [b]7 DOWN:[/b] Clive randomly orders the letters of “MIXING THE LETTERS, MAN”. If $\frac{p}{m^nq}$ is the probability that he gets “LMT IS AN EXTREME THING” where p and q are odd integers, and $m$ is a prime number, then what is $m + n$? [b]8 ACROSS:[/b] Joe is playing darts. A dartboard has scores of $10, 7$, and $4$ on it. If Joe can throw $12$ darts, how many possible scores can he end up with? [b]9 ACROSS:[/b] What is the maximum number of bounded regions that $6$ overlapping ellipses can cut the plane into? [b]10 DOWN:[/b] Let $ABC$ be an equilateral triangle, such that $A$ and $B$ both lie on a unit circle with center $O$. What is the maximum distance between $O$ and $C$? Write your answer be in the form $\frac{a\sqrt{b}}{c}$ where $b$ is not divisible by the square of any prime, and $a$ and $c$ share no common factor. What is $abc$ ? PS. You had better use hide for answers.

2012 Harvard-MIT Mathematics Tournament, 9

How many real triples $(a,b,c)$ are there such that the polynomial $p(x)=x^4+ax^3+bx^2+ax+c$ has exactly three distinct roots, which are equal to $\tan y$, $\tan 2y$, and $\tan 3y$ for some real number $y$?

1977 IMO Shortlist, 9

For which positive integers $n$ do there exist two polynomials $f$ and $g$ with integer coefficients of $n$ variables $x_1, x_2, \ldots , x_n$ such that the following equality is satisfied: \[\sum_{i=1}^n x_i f(x_1, x_2, \ldots , x_n) = g(x_1^2, x_2^2, \ldots , x_n^2) \ ? \]

2021 Saint Petersburg Mathematical Olympiad, 1

Solve the following system of equations $$\sin^2{x} + \cos^2{y} = y^4. $$ $$\sin^2{y} + \cos^2{x} = x^2. $$ [i]A. Khrabov[/i]

1957 AMC 12/AHSME, 39

Two men set out at the same time to walk towards each other from $ M$ and $ N$, $ 72$ miles apart. The first man walks at the rate of $ 4$ mph. The second man walks $ 2$ miles the first hour, $ 2\frac {1}{2}$ miles the second hour, $ 3$ miles the third hour, and so on in arithmetic progression. Then the men will meet: $ \textbf{(A)}\ \text{in 7 hours} \qquad \textbf{(B)}\ \text{in }{8\frac {1}{4}}\text{ hours}\qquad \textbf{(C)}\ \text{nearer }{M}\text{ than }{N}\qquad \\ \textbf{(D)}\ \text{nearer }{N}\text{ than }{M}\qquad \textbf{(E)}\ \text{midway between }{M}\text{ and }{N}$

2008 Mongolia Team Selection Test, 1

Find all function $ f: R^\plus{} \rightarrow R^\plus{}$ such that for any $ x,y,z \in R^\plus{}$ such that $ x\plus{}y \ge z$ , $ f(x\plus{}y\minus{}z) \plus{}f(2\sqrt{xz})\plus{}f(2\sqrt{yz}) \equal{} f(x\plus{}y\plus{}z)$

2010 CHMMC Winter, 7

Tags: algebra
Compute all real numbers $a$ such that the polynomial $x^4 + ax^3 + 1$ has exactly one real root.

2017 Mathematical Talent Reward Programme, MCQ: P 1

Tags: algebra , equation
The number of real solutions of the equation $\left(\frac{9}{10}\right)^x=-3+x-x^2$ is [list=1] [*] 2 [*] 0 [*] 1 [*] None of these [/list]

2004 Unirea, 3

Hello, I've been trying to solve this for a while now, but no success! I mean, I have an expression for this but not a closed one. I derived something in terms of Tchebychev Polynomials : cos(nx) = P_n(cos(x)). Any help is appreciated. Compute the following primitive: \[ \int \frac{x\sin\left(2004 x\right)}{\tan x}\ dx\]

2014 Cuba MO, 8

Let $a$ and $b$ be real numbers. It is known that the graph of the parabola $y =ax^2 +b$ cuts the graph of the curve $y = x+1/x$ in exactly three points. Prove that $3ab < 1$.

2025 Vietnam Team Selection Test, 6

For each prime $p$ of the form $4k+3$ with $k \in \mathbb{Z}^+$, consider the polynomial $$Q(x)=px^{2p} - x^{2p-1} + p^2x^{\frac{3p+1}{2}} - px^{p+1} +2(p^2+1)x^p -px^{p-1}+ p^2 x^{\frac{p-1}{2}} -x + p.$$ Determine all ordered pairs of polynomials $f, g$ with integer coefficients such that $Q(x)=f(x)g(x)$.

2021 2nd Memorial "Aleksandar Blazhevski-Cane", 6

Let $\mathbb{R}^{+}$ be the set of all positive real numbers. Find all the functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that for all $x, y \in \mathbb{R}^{+}$, \[ f(x)f(y) = f(y)f(xf(y)) + \frac{1}{xy}. \]

1991 IMO Shortlist, 23

Let $ f$ and $ g$ be two integer-valued functions defined on the set of all integers such that [i](a)[/i] $ f(m \plus{} f(f(n))) \equal{} \minus{}f(f(m\plus{} 1) \minus{} n$ for all integers $ m$ and $ n;$ [i](b)[/i] $ g$ is a polynomial function with integer coefficients and g(n) = $ g(f(n))$ $ \forall n \in \mathbb{Z}.$

1998 Austrian-Polish Competition, 4

For positive integers $m, n$, denote $$S_m(n)=\sum_{1\le k \le n} \left[ \sqrt[k^2]{k^m}\right]$$ Prove that $S_m(n) \le n + m (\sqrt[4]{2^m}-1)$

2021 IMO Shortlist, A6

Let $m\ge 2$ be an integer, $A$ a finite set of integers (not necessarily positive) and $B_1,B_2,...,B_m$ subsets of $A$. Suppose that, for every $k=1,2,...,m$, the sum of the elements of $B_k$ is $m^k$. Prove that $A$ contains at least $\dfrac{m}{2}$ elements.

2011 Saudi Arabia Pre-TST, 1.4

Let $f_n = 2^{2^n}+ 1$, $n = 1,2,3,...$, be the Fermat’s numbers. Find the least real number $C$ such that $$\frac{1}{f_1}+\frac{2}{f_2}+\frac{2^2}{f_3}+...+\frac{2^{n-1}}{f_n} <C$$ for all positive integers $n$

1988 Poland - Second Round, 1

Let $ f(x) $ be a polynomial, $ n $ - a natural number. Prove that if $ f(x^{n}) $ is divisible by $ x-1 $, then it is also divisible by $ x^{n-1} + x^{n-2} + \ldots + x + $1.

2003 National Olympiad First Round, 8

Let $P$ be a polynomial such that $(x-4)P(2x) = 4(x-1)P(x)$, for every real $x$. If $P(0) \neq 0$, what is the degree of $P$? $ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \text{None of the preceding} $

2013 District Olympiad, 2

Tags: algebra
Find all pairs of real numbers $(a, b)$ such that the equality $$|ax+by|+ |bx + ay| = 2|x| + 2|y|$$ holds for all reals $x$ and $y$.

2019 ABMC, Accuracy

[b]p1.[/b] Compute $45\times 45 - 6$. [b]p2.[/b] Consecutive integers have nice properties. For example, $3$, $4$, $5$ are three consecutive integers, and $8$, $9$, $10$ are three consecutive integers also. If the sum of three consecutive integers is $24$, what is the smallest of the three numbers? [b]p3.[/b] How many positive integers less than $25$ are either multiples of $2$ or multiples of $3$? [b]p4.[/b] Charlotte has $5$ positive integers. Charlotte tells you that the mean, median, and unique mode of his five numbers are all equal to $10$. What is the largest possible value of the one of Charlotte's numbers? [b]p5.[/b] Mr. Meeseeks starts with a single coin. Every day, Mr. Meeseeks goes to a magical coin converter where he can either exchange $1$ coin for $5$ coins or exchange $5$ coins for $3$ coins. What is the least number of days Mr. Meeseeks needs to end with $15$ coins? [b]p6.[/b] Twelve years ago, Violet's age was twice her sister Holo's age. In $7$ years, Holo's age will be $13$ more than a third of Violet's age. $3$ years ago, Violet and Holo's cousin Rindo's age was the sum of their ages. How old is Rindo? [b]p7.[/b] In a $2 \times 3$ rectangle composed of $6$ unit squares, let $S$ be the set of all points $P$ in the rectangle such that a unit circle centered at $P$ covers some point in exactly $3$ of the unit squares. Find the area of the region $S$. For example, the diagram below shows a valid unit circle in a $2 \times 3$ rectangle. [img]https://cdn.artofproblemsolving.com/attachments/d/9/b6e00306886249898c2bdb13f5206ced37d345.png[/img] [b]p8.[/b] What are the last four digits of $2^{1000}$? [b]p9.[/b] There is a point $X$ in the center of a $2 \times 2 \times 2$ box. Find the volume of the region of points that are closer to $X$ than to any of the vertices of the box. [b]p10.[/b] Evaluate $\sqrt{37 \cdot 41 \cdot 113 \cdot 290 - 4319^2}$ [b]p11.[/b] (Estimation) A number is abundant if the sum of all its divisors is greater than twice the number. One such number is $12$, because $1+2+3+4+6+12 = 28 > 24$: How many abundant positive integers less than $20190$ are there? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 Miklos Schweitzer, 8

Prove that all continuous solutions of the functional equation $\left(f(x)-f(y)\right)\left(f\left(\frac{x+y}{2}\right)-f\left(\sqrt{xy}\right)\right)=0 \ , \ \forall x,y\in (0,+\infty)$ are the constant functions.