This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2014 Contests, 1b

Find all functions $f : R-\{0\} \to R$ which satisfy $(1 + y)f(x) - (1 + x)f(y) = yf(x/y) - xf(y/x)$ for all real $x, y \ne 0$, and which take the values $f(1) = 32$ and $f(-1) = -4$.

2004 Unirea, 2

Find the maximum value of the expression $ x+y+z, $ where $ x,y,z $ are real numbers satisfying $$ \left\{ \begin{matrix} x^2+yz\le 2 \\y^2+zx\le 2\\ z^2+xy\le 2 \end{matrix} \right. . $$

2004 Romania National Olympiad, 1

Find all continuous functions $f : \mathbb R \to \mathbb R$ such that for all $x \in \mathbb R$ and for all $n \in \mathbb N^{\ast}$ we have \[ n^2 \int_{x}^{x + \frac{1}{n}} f(t) \, dt = n f(x) + \frac12 . \] [i]Mihai Piticari[/i]

2006 Mid-Michigan MO, 10-12

[b]p1.[/b] A right triangle has hypotenuse of length $12$ cm. The height corresponding to the right angle has length $7$ cm. Is this possible? [img]https://cdn.artofproblemsolving.com/attachments/0/e/3a0c82dc59097b814a68e1063a8570358222a6.png[/img] [b]p2.[/b] Prove that from any $5$ integers one can choose $3$ such that their sum is divisible by $3$. [b]p3.[/b] Two players play the following game on an $8\times 8$ chessboard. The first player can put a knight on an arbitrary square. Then the second player can put another knight on a free square that is not controlled by the first knight. Then the first player can put a new knight on a free square that is not controlled by the knights on the board. Then the second player can do the same, etc. A player who cannot put a new knight on the board loses the game. Who has a winning strategy? [b]p4.[/b] Consider a regular octagon $ABCDEGH$ (i.e., all sides of the octagon are equal and all angles of the octagon are equal). Show that the area of the rectangle $ABEF$ is one half of the area of the octagon. [img]https://cdn.artofproblemsolving.com/attachments/d/1/674034f0b045c0bcde3d03172b01aae337fba7.png[/img] [b]p5.[/b] Can you find a positive whole number such that after deleting the first digit and the zeros following it (if they are) the number becomes $24$ times smaller? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 Uzbekistan National Olympiad, 5

Solve following system equations: \[\left\{ \begin{array}{c} 3x+4y=26\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \sqrt{x^2+y^2-4x+2y+5}+\sqrt{x^2+y^2-20x-10y+125}=10\ \end{array} \right.\ \ \]

2016 Baltic Way, 10

Tags: algebra
Let $a_{0,1}, a_{0,2}, . . . , a_{0, 2016}$ be positive real numbers. For $n\geq 0$ and $1 \leq k < 2016$ set $$a_{n+1,k} = a_{n,k} +\frac{1}{2a_{n,k+1}} \ \ \text{and} \ \ a_{n+1,2016} = a_{n,2016} +\frac{1}{2a_{n,1}}.$$ Show that $\max_{1\leq k \leq 2016} a_{2016,k} > 44.$

2022 ELMO Revenge, 4

Find all ordered pairs of integers $(a,b)$ such that there exists a function $f\colon \mathbb{N} \to \mathbb{N}$ satisfying $$f^{f(n)}(n)=an+b$$ For all $n\in \mathbb{N}$.

2014 BMT Spring, 14

Tags: algebra
Let $(x, y)$ be an intersection of the equations $y = 4x^2 - 28x + 41$ and $x^2 + 25y^2 - 7x + 100y +\frac{349}{4}= 0$. Find the sum of all possible values of $x$.

1969 All Soviet Union Mathematical Olympiad, 116

Tags: algebra
There is a wolf in the centre of a square field, and four dogs in the corners. The wolf can easily kill one dog, but two dogs can kill the wolf. The wolf can run all over the field, and the dogs -- along the fence (border) only. Prove that if the dog's speed is $1.5$ times more than the wolf's, than the dogs can prevent the wolf escaping.

2008 Greece JBMO TST, 2

If $a,b,c$ are positive real numbers, prove that $\frac{a^2b^2}{a+b}+\frac{b^2c^2}{b+c}+\frac{c^2a^2}{c+a}\le \frac{a^3+b^3+c^3}{2}$

2018 Czech and Slovak Olympiad III A, 2

Tags: algebra
Let $x,y,z$ be real numbers such that the numbers $$\frac{1}{|x^2+2yz|},\quad\frac{1}{|y^2+2zx|},\quad\frac{1}{|z^2+2xy|}$$ are lengths of sides of a (non-degenerate) triangle. Determine all possible values of $xy+yz+zx$.

2000 Estonia National Olympiad, 1

Let $x \ne 1$ be a fixed positive number and $a_1, a_2, a_3,...$ some kind of number sequence. Prove that $x^{a_1},x^{a_2},x^{a_3},...$ is a non-constant geometric sequence if and only if $a_1, a_2, a_3,...$. is a non-constant arithmetic sequence.

2010 Postal Coaching, 6

Find all polynomials $P$ with integer coefficients which satisfy the property that, for any relatively prime integers $a$ and $b$, the sequence $\{P (an + b) \}_{n \ge 1}$ contains an infinite number of terms, any two of which are relatively prime.

2009 Greece JBMO TST, 1

One pupil has $7$ cards of paper. He takes a few of them and tears each in $7$ pieces. Then, he choses a few of the pieces of paper that he has and tears it again in $7$ pieces. He continues the same procedure many times with the pieces he has every time. Will he be able to have sometime $2009$ pieces of paper?

1997 Czech And Slovak Olympiad IIIA, 5

For a given integer $n \ge 2$, find the maximum possible value of $V_n = \sin x_1 \cos x_2 +\sin x_2 \cos x_3 +...+\sin x_n \cos x_1$, where $x_1,x_2,...,x_n$ are real numbers.

2024 Tuymaada Olympiad, 7

Given are quadratic trinomials $f$ and $g$ with integral coefficients. For each positive integer $n$ there is an integer $k$ such that \[\frac{f(k)}{g(k)}=\frac{n + 1}{n}. \] Prove that $f$ and $g$ have a common root. [i] Proposed by A. Golovanov [/i]

2011 ELMO Shortlist, 6

Let $Q(x)$ be a polynomial with integer coefficients. Prove that there exists a polynomial $P(x)$ with integer coefficients such that for every integer $n\ge\deg{Q}$, \[\sum_{i=0}^{n}\frac{!i P(i)}{i!(n-i)!} = Q(n),\]where $!i$ denotes the number of derangements (permutations with no fixed points) of $1,2,\ldots,i$. [i]Calvin Deng.[/i]

2025 Austrian MO National Competition, 1

Let $a$, $b$ and $c$ be pairwise distinct nonnegative real numbers. Prove that \[ (a + b + c) \left( \frac{a}{(b - c)^2} + \frac{b}{(c - a)^2} + \frac{c}{(a - b)^2} \right) > 4. \] [i](Karl Czakler)[/i]

2007 AMC 12/AHSME, 24

For each integer $ n > 1,$ let $ F(n)$ be the number of solutions of the equation $ \sin x \equal{} \sin nx$ on the interval $ [0,\pi].$ What is $ \sum_{n \equal{} 2}^{2007}F(n)?$ $ \textbf{(A)}\ 2,014,524 \qquad \textbf{(B)}\ 2,015,028 \qquad \textbf{(C)}\ 2,015,033 \qquad \textbf{(D)}\ 2,016,532 \qquad \textbf{(E)}\ 2,017,033$

2014 Contests, 2

Find all polynomials $P(x)$ with real coefficients such that $P(2014) = 1$ and, for some integer $c$: $xP(x-c) = (x - 2014)P(x)$

2002 AIME Problems, 7

The Binomial Expansion is valid for exponents that are not integers. That is, for all real numbers $ x, y,$ and $ r$ with $ |x| > |y|,$ \[ (x \plus{} y)^r \equal{} x^r \plus{} rx^{r \minus{} 1}y \plus{} \frac {r(r \minus{} 1)}2x^{r \minus{} 2}y^2 \plus{} \frac {r(r \minus{} 1)(r \minus{} 2)}{3!}x^{r \minus{} 3}y^3 \plus{} \cdots \] What are the first three digits to the right of the decimal point in the decimal representation of $ \left(10^{2002} \plus{} 1\right)^{10/7}?$

2006 ISI B.Math Entrance Exam, 3

Tags: induction , algebra
Find all roots of the equation :- $1-\frac{x}{1}+\frac{x(x-1)}{2!} - \cdots +(-1)^n\frac{x(x-1)(x-2)...(x-n+1)}{n!}=0$.

1999 Rioplatense Mathematical Olympiad, Level 3, 4

Prove the following inequality: $$ \frac{1}{\sqrt[3]{1^2}+\sqrt[3]{1 \cdot 2}+\sqrt[3]{2^2} }+\frac{1}{\sqrt[3]{3^2}+\sqrt[3]{3 \cdot 4}+\sqrt[3]{4^2} }+...+ \frac{1}{\sqrt[3]{999^2}+\sqrt[3]{999 \cdot 1000}+\sqrt[3]{1000^2} }> \frac{9}{2}$$ (The member on the left has 500 fractions.)

1966 AMC 12/AHSME, 39

In base $R_1$ the expanded fraction $F_1$ becomes $0.373737...$, and the expanded fraction $F_2$ becomes $0.737373...$. In base $R_2$ fraction $F_1$, when expanded, becomes $0.252525...$, while fraction $F_2$ becomes $0.525252...$. The sum of $R_1$ and $R_2$, each written in base ten is: $\text{(A)}\ 24 \qquad \text{(B)}\ 22\qquad \text{(C)}\ 21\qquad \text{(D)}\ 20\qquad \text{(E)}\ 19$

1979 Romania Team Selection Tests, 4.

Give an example of a second degree polynomial $P\in \mathbb{R}[x]$ such that \[\forall x\in \mathbb{R}\text{ with } |x|\leqslant 1: \; \left|P(x)+\frac{1}{x-4}\right| \leqslant 0.01.\] Are there linear polynomials with this property? [i]Octavian Stănășilă[/i]