Found problems: 15925
2020 Estonia Team Selection Test, 3
Find all functions $f :R \to R$ such that for all real numbers $x$ and $y$
$$f(x^3+y^3)=f(x^3)+3x^3f(x)f(y)+3f(x)(f(y))^2+y^6f(y)$$
1978 IMO Longlists, 14
Let $p(x, y)$ and $q(x, y)$ be polynomials in two variables such that for $x \ge 0, y \ge 0$ the following conditions hold:
$(i) p(x, y)$ and $q(x, y)$ are increasing functions of $x$ for every fixed $y$.
$(ii) p(x, y)$ is an increasing and $q(x)$ is a decreasing function of $y$ for every fixed $x$.
$(iii) p(x, 0) = q(x, 0)$ for every $x$ and $p(0, 0) = 0$.
Show that the simultaneous equations $p(x, y) = a, q(x, y) = b$ have a unique solution in the set $x \ge 0, y \ge 0$ for all $a, b$ satisfying $0 \le b \le a$ but lack a solution in the same set if $a < b$.
2013 Iran MO (3rd Round), 3
Real function $f$ [b]generates[/b] real function $g$ if there exists a natural $k$ such that $f^k=g$ and we show this by $f \rightarrow g$. In this question we are trying to find some properties for relation $\rightarrow$, for example it's trivial that if $f \rightarrow g$ and $g \rightarrow h$ then $f \rightarrow h$.(transitivity)
(a) Give an example of two real functions $f,g$ such that $f\not = g$ ,$f\rightarrow g$ and $g\rightarrow f$.
(b) Prove that for each real function $f$ there exists a finite number of real functions $g$ such that $f \rightarrow g$ and $g \rightarrow f$.
(c) Does there exist a real function $g$ such that no function generates it, except for $g$ itself?
(d) Does there exist a real function which generates both $x^3$ and $x^5$?
(e) Prove that if a function generates two polynomials of degree 1 $P,Q$ then there exists a polynomial $R$ of degree 1 which generates $P$ and $Q$.
Time allowed for this problem was 75 minutes.
1996 All-Russian Olympiad Regional Round, 9.1
Find all pairs of square trinomials $x^2 + ax + b$, $ x^2 + cx + d$ such that $a$ and $b$ are the roots of the second trinomial, $c$ and $d$ are the roots of the first.
1967 IMO Shortlist, 6
Prove the identity \[\sum\limits_{k=0}^n\binom{n}{k}\left(\tan\frac{x}{2}\right)^{2k}\left(1+\frac{2^k}{\left(1-\tan^2\frac{x}{2}\right)^k}\right)=\sec^{2n}\frac{x}{2}+\sec^n x\] for any natural number $n$ and any angle $x.$
2010 USA Team Selection Test, 1
Let $P$ be a polynomial with integer coefficients such that $P(0)=0$ and
\[\gcd(P(0), P(1), P(2), \ldots ) = 1.\]
Show there are infinitely many $n$ such that
\[\gcd(P(n)- P(0), P(n+1)-P(1), P(n+2)-P(2), \ldots) = n.\]
2015 Iran Team Selection Test, 1
Find all polynomials $P,Q\in \Bbb{Q}\left [ x \right ]$ such that
$$P(x)^3+Q(x)^3=x^{12}+1.$$
2008 Stars Of Mathematics, 1
Let $ P(x) \in \mathbb{Z}[x]$ be a polynomial of degree $ \text{deg} P \equal{} n > 1$. Determine the largest number of consecutive integers to be found in $ P(\mathbb{Z})$.
[i]B. Berceanu[/i]
1979 IMO Longlists, 72
Let $f (x)$ be a polynomial with integer coefficients. Prove that if $f (x)= 1979$ for four different integer values of $x$, then $f (x)$ cannot be equal to $2\times 1979$ for any integral value of $x$.
2002 India IMO Training Camp, 12
Let $a,b$ be integers with $0<a<b$. A set $\{x,y,z\}$ of non-negative integers is [i]olympic[/i] if $x<y<z$ and if $\{z-y,y-x\}=\{a,b\}$. Show that the set of all non-negative integers is the union of pairwise disjoint olympic sets.
1995 Romania Team Selection Test, 4
Let $m,n$ be positive integers, greater than 2.Find the number of polynomials of degree $2n-1$ with distinct coefficients from the set $\left\{ 1,2,\ldots,m\right\}$ which are divisible by $x^{n-1}+x^{n-2}+\ldots+1.$
1985 Bundeswettbewerb Mathematik, 3
Starting with the sequence $F_1 = (1,2,3,4, \ldots)$ of the natural numbers further sequences are generated as follows: $F_{n+1}$ is created from $F_n$ by the following rule: the order of elements remains unchanged, the elements from $F_n$ which are divisible by $n$ are increased by 1 and the other elements from $F_n$ remain unchanged. Example: $F_2 = (2,3,4,5 \ldots)$ and $F_3 = (3,3,5,5, \ldots)$. Determine all natural numbers $n$ such that exactly the first $n-1$ elements of $F_n$ take the value $n.$
2001 All-Russian Olympiad Regional Round, 8.2
$N$ numbers - ones and twos - are arranged in a circle. We mean a number formed by several digits arranged in a row (clockwise or counterclockwise). For what is the smallest value of $N$, all four-digit numbers whose writing contains only numbers $1$ and $2$, could they be among those shown?
2023 VN Math Olympiad For High School Students, Problem 5
Given a polynomial$$P(x)=x^n+a_{n-1}x^{n-1}+...+a_1x+a_0\in \mathbb{Z}[x]$$
with degree $n\ge 2$ and $a_o\ne 0.$
Prove that if $|a_{n-1}|>1+|a_{n-2}|+...+|a_1|+|a_0|$, then $P(x)$ is irreducible in $\mathbb{Z}[x].$
2019 Auckland Mathematical Olympiad, 4
Suppose $a_1 =\frac16$ and $a_n = a_{n-1} - \frac{1}{n}+ \frac{2}{n + 1} - \frac{1}{n + 2}$ for $n > 1$. Find $a_{100}$.
2017 Iran Team Selection Test, 4
A $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ where $h_i\left(x_1,x_2, \cdots , x_n\right)$ are $n$ variable polynomials with real coefficients is called [i]good[/i] if the following condition holds:
For any $n$ functions $f_1,f_2, \cdots ,f_n : \mathbb R \to \mathbb R$ if for all $1 \le i \le n+1$, $P_i(x)=h_i \left(f_1(x),f_2(x), \cdots, f_n(x) \right)$ is a polynomial with variable $x$, then $f_1(x),f_2(x), \cdots, f_n(x)$ are polynomials.
$a)$ Prove that for all positive integers $n$, there exists a [i]good[/i] $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ such that the degree of all $h_i$ is more than $1$.
$b)$ Prove that there doesn't exist any integer $n>1$ that for which there is a [i]good[/i] $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ such that all $h_i$ are symmetric polynomials.
[i]Proposed by Alireza Shavali[/i]
1979 IMO Shortlist, 26
Prove that the functional equations
\[f(x + y) = f(x) + f(y),\]
\[ \text{and} \qquad f(x + y + xy) = f(x) + f(y) + f(xy) \quad (x, y \in \mathbb R)\]
are equivalent.
1995 Taiwan National Olympiad, 1
Let $P(x)=a_{0}+a_{1}x+...+a_{n}x^{n}\in\mathbb{C}[x]$ , where $a_{n}=1$. The roots of $P(x)$ are $b_{1},b_{2},...,b_{n}$, where $|b_{1}|,|b_{2}|,...,|b_{j}|>1$ and $|b_{j+1}|,...,|b_{n}|\leq 1$. Prove that $\prod_{i=1}^{j}|b_{i}|\leq\sqrt{|a_{0}|^{2}+|a_{1}|^{2}+...+|a_{n}|^{2}}$.
2018 Latvia Baltic Way TST, P2
Find all ordered pairs $(x,y)$ of real numbers that satisfy the following system of equations:
$$\begin{cases}
y(x+y)^2=2\\
8y(x^3-y^3) = 13.
\end{cases}$$
2012 AMC 8, 3
On February 13 [i]The Oshkosh Northwester[/i] listed the length of daylight as 10 hours and 24 minutes, the sunrise was $6:57 \textsc{am}$, and the sunset as $8:15 \textsc{pm}$. The length of daylight and sunrise were correct, but the sunset was wrong. When did the sun really set?
$\textbf{(A)}\hspace{.05in}5:10 \textsc{pm} \quad \textbf{(B)}\hspace{.05in}5:21 \textsc{pm} \quad \textbf{(C)}\hspace{.05in}5:41\textsc{pm} \quad \textbf{(D)}\hspace{.05in}5:57 \textsc{pm} \quad \textbf{(E)}\hspace{.05in}6:03 \textsc{pm} $
2014 Peru MO (ONEM), 1
Find all triples ( $\alpha, \beta,\theta$) of acute angles such that the following inequalities are fulfilled at the same time
$$(\sin \alpha + \cos \beta + 1)^2 \ge 2(\sin \alpha + 1)(\cos \beta + 1)$$
$$(\sin \beta + \cos \theta + 1)^2 \ge 2(\sin \beta + 1)(\cos \theta + 1)$$
$$(\sin \theta + \cos \alpha + 1)^2 \ge 2(\sin \theta + 1)(\cos \alpha + 1).$$
2017 Moldova Team Selection Test, 9
Let $$P(X)=a_{0}X^{n}+a_{1}X^{n-1}+\cdots+a_{n}$$ be a polynomial with real coefficients such that $a_{0}>0$ and $$a_{n}\geq a_{i}\geq 0,$$ for all $i=0,1,2,\ldots,n-1.$ Prove that if $$P^{2}(X)=b_{0}X^{2n}+b_{1}X^{2n-1}+\cdots+b_{n-1}X^{n+1}+\cdots+b_{2n},$$ then $P^2(1)\geq 2b_{n-1}.$
2012 Hanoi Open Mathematics Competitions, 4
What is the largest integer less than or equal to $4x^3 - 3x$, where $x=\frac{\sqrt[3]{2+\sqrt3}+\sqrt[3]{2-\sqrt3}}{2}$ ?
(A) $1$, (B) $2$, (C) $3$, (D) $4$, (E) None of the above.
2012 Romania Team Selection Test, 1
Find all triples $(a,b,c)$ of positive integers with the following property: for every prime $p$, if $n$ is a quadratic residue $\mod p$, then $an^2+bn+c$ is a quadratic residue $\mod p$.
2000 Junior Balkan Team Selection Tests - Romania, 2
Let be a natural power of two. Find the number of numbers equivalent with $ 1 $ modulo $ 3 $ that divide it.
[i]Dan Brânzei[/i]