Found problems: 15925
LMT Team Rounds 2010-20, 2019 Fall
[b]p1.[/b] What is the smallest possible value for the product of two real numbers that differ by ten?
[b]p2.[/b] Determine the number of positive integers $n$ with $1 \le n \le 400$ that satisfy the following:
$\bullet$ $n$ is a square number.
$\bullet$ $n$ is one more than a multiple of $5$.
$\bullet$ $n$ is even.
[b]p3.[/b] How many positive integers less than $2019$ are either a perfect cube or a perfect square but not both?
[b]p4.[/b] Felicia draws the heart-shaped figure $GOAT$ that is made of two semicircles of equal area and an equilateral triangle, as shown below. If $GO = 2$, what is the area of the figure?
[img]https://cdn.artofproblemsolving.com/attachments/3/c/388daa657351100f408ab3f1185f9ab32fcca5.png[/img]
[b]p5.[/b] For distinct digits $A, B$, and $ C$:
$$\begin{tabular}{cccc}
& A & A \\
& B & B \\
+ & C & C \\
\hline
A & B & C \\
\end{tabular}$$ Compute $A \cdot B \cdot C$.
[b]p6 [/b] What is the difference between the largest and smallest value for $lcm(a,b,c)$, where $a,b$, and $c$ are distinct positive integers between $1$ and $10$, inclusive?
[b]p7.[/b] Let $A$ and $B$ be points on the circumference of a circle with center $O$ such that $\angle AOB = 100^o$. If $X$ is the midpoint of minor arc $AB$ and $Y$ is on the circumference of the circle such that $XY\perp AO$, find the measure of $\angle OBY$ .
[b]p8. [/b]When Ben works at twice his normal rate and Sammy works at his normal rate, they can finish a project together in $6$ hours. When Ben works at his normal rate and Sammy works as three times his normal rate, they can finish the same project together in $4$ hours. How many hours does it take Ben and Sammy to finish that project if they each work together at their normal rates?
[b][b]p9.[/b][/b] How many positive integer divisors $n$ of $20000$ are there such that when $20000$ is divided by $n$, the quotient is divisible by a square number greater than $ 1$?
[b]p10.[/b] What’s the maximum number of Friday the $13$th’s that can occur in a year?
[b]p11.[/b] Let circle $\omega$ pass through points $B$ and $C$ of triangle $ABC$. Suppose $\omega$ intersects segment $AB$ at a point $D \ne B$ and intersects segment $AC$ at a point $E \ne C$. If $AD = DC = 12$, $DB = 3$, and $EC = 8$, determine the length of $EB$.
[b]p12.[/b] Let $a,b$ be integers that satisfy the equation $2a^2 - b^2 + ab = 18$. Find the ordered pair $(a,b)$.
[b]p13.[/b] Let $a,b,c$ be nonzero complex numbers such that $a -\frac{1}{b}= 8, b -\frac{1}{c}= 10, c -\frac{1}{a}= 12.$
Find $abc -\frac{1}{abc}$ .
[b]p14.[/b] Let $\vartriangle ABC$ be an equilateral triangle of side length $1$. Let $\omega_0$ be the incircle of $\vartriangle ABC$, and for $n > 0$, define the infinite progression of circles $\omega_n$ as follows:
$\bullet$ $\omega_n$ is tangent to $AB$ and $AC$ and externally tangent to $\omega_{n-1}$.
$\bullet$ The area of $\omega_n$ is strictly less than the area of $\omega_{n-1}$.
Determine the total area enclosed by all $\omega_i$ for $i \ge 0$.
[b]p15.[/b] Determine the remainder when $13^{2020} +11^{2020}$ is divided by $144$.
[b]p16.[/b] Let $x$ be a solution to $x +\frac{1}{x}= 1$. Compute $x^{2019} +\frac{1}{x^{2019}}$ .
[b]p17. [/b]The positive integers are colored black and white such that if $n$ is one color, then $2n$ is the other color. If all of the odd numbers are colored black, then how many numbers between $100$ and $200$ inclusive are colored white?
[b]p18.[/b] What is the expected number of rolls it will take to get all six values of a six-sided die face-up at least once?
[b]p19.[/b] Let $\vartriangle ABC$ have side lengths $AB = 19$, $BC = 2019$, and $AC = 2020$. Let $D,E$ be the feet of the angle bisectors drawn from $A$ and $B$, and let $X,Y$ to be the feet of the altitudes from $C$ to $AD$ and $C$ to $BE$, respectively. Determine the length of $XY$ .
[b]p20.[/b] Suppose I have $5$ unit cubes of cheese that I want to divide evenly amongst $3$ hungry mice. I can cut the cheese into smaller blocks, but cannot combine blocks into a bigger block. Over all possible choices of cuts in the cheese, what’s the largest possible volume of the smallest block of cheese?
PS. You had better use hide for answers.
2011 Macedonia National Olympiad, 4
Find all functions $~$ $f: \mathbb{R} \to \mathbb{R}$ $~$ which satisfy the equation
\[ f(x+yf(x))\, =\, f(f(x)) + xf(y)\, . \]
2005 IberoAmerican, 1
Determine all triples of real numbers $(a,b,c)$ such that \begin{eqnarray*} xyz &=& 8 \\ x^2y + y^2z + z^2x &=& 73 \\ x(y-z)^2 + y(z-x)^2 + z(x-y)^2 &=& 98 . \end{eqnarray*}
1980 IMO, 9
Prove that is $x,y$ are non negative integers then $5x\ge 7y$ if and only if there exist non-negative integers $(a,b,c,d)$ such that
\[\left\{\begin{array}{l}x=a+2b+3c+7d\qquad\\ y=b+2c+5d\qquad\\ \end{array}\right.\]
2011 Math Prize For Girls Problems, 18
The polynomial $P$ is a quadratic with integer coefficients. For every positive integer $n$, the integers $P(n)$ and $P(P(n))$ are relatively prime to $n$. If $P(3) = 89$, what is the value of $P(10)$?
2024/2025 TOURNAMENT OF TOWNS, P4
Does there exist an infinite sequence of real numbers ${a}_{1},{a}_{2},{a}_{3},\ldots$ such that ${a}_{1} = 1$ and for all positive integers $k$ we have the equality
$$
{a}_{k} = {a}_{2k} + {a}_{3k} + {a}_{4k} + \ldots ?
$$
Ilya Lobatsky
2022 Junior Balkan Team Selection Tests - Romania, P1
Let $a\geq b\geq c\geq d$ be real numbers such that $(a-b)(b-c)(c-d)(d-a)=-3.$
[list=a]
[*]If $a+b+c+d=6,$ prove that $d<0,36.$
[*]If $a^2+b^2+c^2+d^2=14,$ prove that $(a+c)(b+d)\leq 8.$ When does equality hold?
[/list]
2024 All-Russian Olympiad Regional Round, 10.2
On a cartesian plane a parabola $y = x^2$ is drawn. For a given $k > 0$ we consider all trapezoids inscribed into this parabola with bases parallel to the x-axis, and the product of the lengths of their bases is exactly $k$. Prove that the lateral sides of all such trapezoids share a common point.
2020 Taiwan APMO Preliminary, P1
Let $\triangle ABC$ satisfies $\cos A:\cos B:\cos C=1:1:2$, then $\sin A=\sqrt[s]{t}$($s\in\mathbb{N},t\in\mathbb{Q^+}$ and $t$ is an irreducible fraction). Find $s+t$.
1985 AIME Problems, 13
The numbers in the sequence 101, 104, 109, 116, $\dots$ are of the form $a_n = 100 + n^2$, where $n = 1$, 2, 3, $\dots$. For each $n$, let $d_n$ be the greatest common divisor of $a_n$ and $a_{n + 1}$. Find the maximum value of $d_n$ as $n$ ranges through the positive integers.
Kettering MO, 2018
[b]p1.[/b] Solve the equation: $\sqrt{x} +\sqrt{x + 1} - \sqrt{x + 2} = 0$.
[b]p2.[/b] Solve the inequality: $\ln (x^2 + 3x + 2) \le 0$.
[b]p3.[/b] In the trapezoid $ABCD$ ($AD \parallel BC$) $|AD|+|AB| = |BC|+|CD|$. Find the ratio of the length of the sides $AB$ and $CD$ ($|AB|/|CD|$).
[b]p4.[/b] Gollum gave Bilbo a new riddle. He put $64$ stones that are either white or black on an $8 \times 8$ chess board (one piece per each of $64$ squares). At every move Bilbo can replace all stones of any horizontal or vertical row by stones of the opposite color (white by black and black by white). Bilbo can make as many moves as he needs. Bilbo needs to get a position when in every horizontal and in every vertical row the number of white stones is greater than or equal to the number of black stones. Can Bilbo solve the riddle and what should be his solution?
[b]p5.[/b] Two trolls Tom and Bert caught Bilbo and offered him a game. Each player got a bag with white, yellow, and black stones. The game started with Tom putting some number of stones from his bag on the table, then Bert added some number of stones from his bag, and then Bilbo added some stones from his bag. After that three players started making moves. At each move a player chooses two stones of different colors, takes them away from the table, and puts on the table a stone of the color different from the colors of chosen stones. Game ends when stones of one color only remain on the table. If the remaining stones are white Tom wins and eats Bilbo, if they are yellow, Bert wins and eats Bilbo, if they are black, Bilbo wins and is set free. Can you help Bilbo to save his life by offering him a winning strategy?
[b]p6.[/b] There are four roads in Mirkwood that are straight lines. Bilbo, Gandalf, Legolas, and Thorin were travelling along these roads, each along a different road, at a different constant speed. During their trips Bilbo met Gandalf, and both Bilbo and Gandalf met Legolas and Thorin, but neither three of them met at the same time. When meeting they did not stop and did not change the road, the speed, and the direction. Did Legolas meet Thorin? Justify your answer.
PS. You should use hide for answers.
1989 Federal Competition For Advanced Students, P2, 1
Consider the set $ S_n$ of all the $ 2^n$ numbers of the type $ 2\pm \sqrt{2 \pm \sqrt {2 \pm ...}},$ where number $ 2$ appears $ n\plus{}1$ times.
$ (a)$ Show that all members of $ S_n$ are real.
$ (b)$ Find the product $ P_n$ of the elements of $ S_n$.
2025 Belarusian National Olympiad, 8.7
Yan and Kirill play a game. At first Kirill says 4 numbers $x_1<x_2<x_3<x_4$, and then Yan says three pairwise different non zero numbers $a_1$, $a_2$ and $a_3$. For all $i$ from $1$ to $3$ they consider the quadratic trinomial $f_i(x)$ which has roots $x_i$ and $x_{i+1}$ and leading coefficient $a_i$, and construct on the plane the graphs of that trinomials. Yan wins if in every pair $(f_1(x),f_2(x))$ and $(f_2(x),f_3(x))$ their graphs intersect at exactly one point, and if in some pair graphs do not intersect or intersect at more than one point Kirill wins.
Find which player can guarantee his win regardless of the actions of his opponent.
[i]V. Kamianetski[/i]
1997 ITAMO, 2
Let a real function $f$ defined on the real numbers satisfy the following conditions:
(i) $f(10+x) = f(10- x)$
(ii) $f(20+x) = - f(20- x)$
for all $x$. Prove that f is odd and periodic.
2021 IMO Shortlist, A8
Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy $$(f(a)-f(b))(f(b)-f(c))(f(c)-f(a)) = f(ab^2+bc^2+ca^2) - f(a^2b+b^2c+c^2a)$$for all real numbers $a$, $b$, $c$.
[i]Proposed by Ankan Bhattacharya, USA[/i]
the 6th XMO, 2
Assume that complex numbers $z_1,z_2,...,z_n$ satisfy $|z_i-z_j| \le 1$ for any $1 \le i <j \le n$. Let
$$S= \sum_{1 \le i <j \le n} |z_i-z_j|^2.$$
(1) If $n = 6063$, find the maximum value of $S$.
(2) If $n= 2021$, find the maximum value of $S$.
1987 IMO Shortlist, 7
Given five real numbers $u_0, u_1, u_2, u_3, u_4$, prove that it is always possible to find five real numbers $v0, v_1, v_2, v_3, v_4$ that satisfy the following conditions:
$(i)$ $u_i-v_i \in \mathbb N, \quad 0 \leq i \leq 4$
$(ii)$ $\sum_{0 \leq i<j \leq 4} (v_i - v_j)^2 < 4.$
[i]Proposed by Netherlands.[/i]
2013 IFYM, Sozopol, 7
Let $a,b,c,$ and $d$ be real numbers and $k\geq l\geq m$ and $p\geq q\geq r$. Prove that
$f(x)=a(x+1)^k (x+2)^p+b(x+1)^l (x+2)^q+c(x+1)^m (x+2)^r-d=0$
has no more than 14 positive roots.
2019-IMOC, A4
Find all functions $f:\mathbb N\to\mathbb N$ so that
$$f^{2f(b)}(2a)=f(f(a+b))+a+b$$
holds for all positive integers $a,b$.
2015 Princeton University Math Competition, A3/B5
Find the sum of the non-repeated roots of the polynomial $P(x) = x^6-5x^5-4x^4-5x^3+8x^2+7x+7$.
2015 Postal Coaching, Problem 2
Let $ n$ be a positive integer. Find the number of odd coefficients of the polynomial
\[ u_n(x) \equal{} (x^2 \plus{} x \plus{} 1)^n.
\]
2003 Kazakhstan National Olympiad, 2
For positive real numbers $ x, y, z $, prove the inequality: $$ \displaylines {\frac {x ^ 3} {x + y} + \frac {y ^ 3} {y + z} + \frac {z ^ 3} {z + x} \geq \frac {xy + yz + zx} {2}.} $$
2016 Grand Duchy of Lithuania, 1
Let $a, b$ and $c$ be positive real numbers such that $a + b + c = 1$. Prove that
$$\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2} \le \frac{1}{4} \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$$
1998 Akdeniz University MO, 5
Solve the equation system for real numbers:
$$x_1+x_2=x_3^2$$
$$x_2+x_3=x_4^2$$
$$x_3+x_4=x_1^2$$
$$x_4+x_1=x_2^2$$
2023 Argentina National Olympiad Level 2, 5
A rectangular parallelepiped painted blue is cut into $1 \times 1\times 1$ cubes. Find the possible dimensions if the number of cubes without blue faces is equal to one-third of the total number of cubes.
[b]Note:[/b] A [i]rectangular parallelepiped[/i] is a solid with $6$ faces, all of which are rectangles (or squares).