This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1985 IMO Longlists, 66

Let $D$ be the interior of the circle $C$ and let $A \in C$. Show that the function $f : D \to \mathbb R, f(M)=\frac{|MA|}{|MM'|}$ where $M' = AM \cap C$, is strictly convex; i.e., $f(P) <\frac{f(M_1)+f(M_2)}{2}, \forall M_1,M_2 \in D, M_1 \neq M_2$ where $P$ is the midpoint of the segment $M_1M_2.$

1990 Greece National Olympiad, 4

Froa nay real $x$, we denote $[x]$, the integer part of $x$ and with $\{x\}$ the fractional part of $x$, such that $x=[x]+\{x\}$. a) Find at least one real $x$ such that$\{x\}+\left\{\frac{1}{x}\right\}=1$ b) Find all rationals $x$ such that $\{x\}+\left\{\frac{1}{x}\right\}=1$

1989 All Soviet Union Mathematical Olympiad, 499

Do there exist two reals whose sum is rational, but the sum of their $n$ th powers is irrational for all $n > 1$? Do there exist two reals whose sum is irrational, but the sum of whose $n$ th powers is rational for all $n > 1$?

2014 Contests, 3

Tags: algebra
Prove that for every integer $S\ge100$ there exists an integer $P$ for which the following story could hold true: The mathematician asks the shop owner: ``How much are the table, the cabinet and the bookshelf?'' The shop owner replies: ``Each item costs a positive integer amount of Euros. The table is more expensive than the cabinet, and the cabinet is more expensive than the bookshelf. The sum of the three prices is $S$ and their product is $P$.'' The mathematician thinks and complains: ``This is not enough information to determine the three prices!'' (Proposed by Gerhard Woeginger, Austria)

2018 Mathematical Talent Reward Programme, SAQ: P 3

Tags: function , algebra
Does there exist any continuous function $ f$ such that $ f(f(x))=-x^{2019}\ \forall\ x \in \mathbb{R}$

2019 Nepal TST, P3

Tags: algebra
Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for any real $x, y$ holds equality $$f(xf(y)) + f(xy) = 2f(x)y$$ [i]Proposed by Arseniy Nikolaev[/i]

2009 China Team Selection Test, 2

Find all complex polynomial $ P(x)$ such that for any three integers $ a,b,c$ satisfying $ a \plus{} b \plus{} c\not \equal{} 0, \frac{P(a) \plus{} P(b) \plus{} P(c)}{a \plus{} b \plus{} c}$ is an integer.

2001 District Olympiad, 3

Consider a continuous function $f:[0,1]\rightarrow \mathbb{R}$ such that for any third degree polynomial function $P:[0,1]\to [0,1]$, we have \[\int_0^1f(P(x))dx=0\] Prove that $f(x)=0,\ (\forall)x\in [0,1]$. [i]Mihai Piticari[/i]

2024 Bulgarian Autumn Math Competition, 10.3

Find all polynomials $P$ with integer coefficients, for which there exists a number $N$, such that for every natural number $n \geq N$, all prime divisors of $n+2^{\lfloor \sqrt{n} \rfloor}$ are also divisors of $P(n)$.

2019 Baltic Way, 3

Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that $$f(xf(y)-y^2)=(y+1)f(x-y)$$ holds for all $x,y\in\mathbb{R}$.

2021 BMT, T4

Let $z_1$, $z_2$, and $z_3$ be the complex roots of the equation $(2z -3\overline{z})^3 = 54i+54$. Compute the area of the triangle formed by $z_1$, $z_2$, and $z_3$ when plotted in the complex plane.

Russian TST 2015, P1

Let $n>4$ be a natural number. Prove that \[\sum_{k=2}^n\sqrt[k]{\frac{k}{k-1}}<n.\]

2020 Romania EGMO TST, P2

Tags: algebra , function
Suppose a function $f:\mathbb{R}\to\mathbb{R}$ satisfies $|f(x+y)|\geqslant|f(x)+f(y)|$ for all real numbers $x$ and $y$. Prove that equality always holds. Is the conclusion valid if the sign of the inequality is reversed?

IV Soros Olympiad 1997 - 98 (Russia), 10.7

Tags: algebra , radical
Prove that the number $\left(\sqrt2+\sqrt3+\sqrt5\right)^{1997}$ can be represented as $$A\sqrt2+B\sqrt3+C\sqrt5+D\sqrt{30}$$ where $A$, $B$, $C$, $D$ are integers. Find with approximation to $10^{-10}$ the ratio $\frac{D}{A}$

1970 IMO Longlists, 54

Let $P,Q,R$ be polynomials and let $S(x) = P(x^3) + xQ(x^3) + x^2R(x^3)$ be a polynomial of degree $n$ whose roots $x_1,\ldots, x_n$ are distinct. Construct with the aid of the polynomials $P,Q,R$ a polynomial $T$ of degree $n$ that has the roots $x_1^3 , x_2^3 , \ldots, x_n^3.$

2016 239 Open Mathematical Olympiad, 4

Positive real numbers $a,b,c$ are given such that $abc=1$. Prove that$$a+b+c+\frac{3}{ab+bc+ca}\geq4.$$

2012 Stanford Mathematics Tournament, 6

There exist two triples of real numbers $(a,b,c)$ such that $a-\frac{1}{b}, b-\frac{1}{c}, c-\frac{1}{a}$ are the roots to the cubic equation $x^3-5x^2-15x+3$ listed in increasing order. Denote those $(a_1, b_1, c_1)$ and $(a_2, b_2, c_2)$. If $a_1$, $b_1$, and $c_1$ are the roots to monic cubic polynomial $f$ and $a_2, b_2$, and $c_2$ are the roots to monic cubic polynomial $g$, find $f(0)^3+g(0)^3$

2009 Regional Olympiad of Mexico Northeast, 1

Tags: sequence , algebra
Consider the sequence $\{1,3,13,31,...\}$ that is obtained by following diagonally the following array of numbers in a spiral. Find the number in the $100$th position of that sequence. [img]https://cdn.artofproblemsolving.com/attachments/b/d/3531353472a748e3e0b1497a088472691f67fd.png[/img]

2009 Princeton University Math Competition, 8

Find the largest positive integer $k$ such that $\phi ( \sigma ( 2^k)) = 2^k$. ($\phi(n)$ denotes the number of positive integers that are smaller than $n$ and relatively prime to $n$, and $\sigma(n)$ denotes the sum of divisors of $n$). As a hint, you are given that $641|2^{32}+1$.

2023 ISL, A6

For each integer $k\geq 2$, determine all infinite sequences of positive integers $a_1$, $a_2$, $\ldots$ for which there exists a polynomial $P$ of the form \[ P(x)=x^k+c_{k-1}x^{k-1}+\dots + c_1 x+c_0, \] where $c_0$, $c_1$, \dots, $c_{k-1}$ are non-negative integers, such that \[ P(a_n)=a_{n+1}a_{n+2}\cdots a_{n+k} \] for every integer $n\geq 1$.

1997 Turkey Junior National Olympiad, 1

Solve the equation $\sqrt {a-\sqrt{a+x}}=x$ in real numbers in terms of the real number $a>1$.

1973 Polish MO Finals, 1

Prove that every polynomial is a difference of two increasing polynomials.

2022 Azerbaijan BMO TST, A2

Find all functions $f : R \to R$ with $f (x + yf(x + y))= y^2 + f(x)f(y)$ for all $x, y \in R$.

1971 IMO Shortlist, 8

Determine whether there exist distinct real numbers $a, b, c, t$ for which: [i](i)[/i] the equation $ax^2 + btx + c = 0$ has two distinct real roots $x_1, x_2,$ [i](ii)[/i] the equation $bx^2 + ctx + a = 0$ has two distinct real roots $x_2, x_3,$ [i](iii)[/i] the equation $cx^2 + atx + b = 0$ has two distinct real roots $x_3, x_1.$

1972 Dutch Mathematical Olympiad, 2

Prove that there exists exactly one function $ƒ$ which is defined for all $x \in R$, and for which holds: $\bullet$ $x \le y \Rightarrow f(x) \le f(y)$, for all $x, y \in R$, and $\bullet$ $f(f(x)) = x$, for all $x \in R$.