Found problems: 357
2007 Harvard-MIT Mathematics Tournament, 35
[i]The Algorithm.[/i] There are thirteen broken computers situated at the following set $S$ of thirteen points in the plane:
\[\begin{array}{ccc}A=(1,10)&B=(976,9)&C=(666,87)\\D=(377,422)&E=(535,488)&F=(775,488) \\ G=(941,500) & H=(225,583)&I=(388,696)\\J=(3,713)&K=(504,872)&L=(560,934)\\&M=(22,997)&\end{array}\]
At time $t=0$, a repairman begins moving from one computer to the next, traveling continuously in straight lines at unit speed. Assuming the repairman begins and $A$ and fixes computers instantly, what path does he take to minimize the [i]total downtime[/i] of the computers? List the points he visits in order. Your score will be $\left\lfloor \dfrac{N}{40}\right\rfloor$, where \[N=1000+\lfloor\text{the optimal downtime}\rfloor - \lfloor \text{your downtime}\rfloor ,\] or $0$, whichever is greater. By total downtime we mean the sum \[\sum_{P\in S}t_P,\] where $t_P$ is the time at which the repairman reaches $P$.
2005 Colombia Team Selection Test, 2
The following operation is allowed on a finite graph: Choose an arbitrary cycle of length 4 (if there is any), choose an arbitrary edge in that cycle, and delete it from the graph. For a fixed integer ${n\ge 4}$, find the least number of edges of a graph that can be obtained by repeated applications of this operation from the complete graph on $n$ vertices (where each pair of vertices are joined by an edge).
[i]Proposed by Norman Do, Australia[/i]
2011 ISI B.Math Entrance Exam, 7
If $a_1, a_2, \cdots, a_7$ are not necessarily distinct real numbers such that $1 < a_i < 13$ for all $i$, then show that we can choose three of them such that they are the lengths of the sides of a triangle.
2016 Tournament Of Towns, 4
There are $64$ towns in a country and some pairs of towns are connected by roads but we do not know these pairs. We may choose any pair of towns and find out whether they are connected or not. Our aim is to determine whether it is possible to travel from any town to any other by a sequence of roads. Prove that there is no algorithm which enables us to do so in less than $2016$ questions.
(Proposed by Konstantin Knop)
2014 USAMTS Problems, 5:
Find the smallest positive integer $n$ that satisfies the following:
We can color each positive integer with one of $n$ colors such that the equation $w + 6x = 2y + 3z$ has no solutions in positive integers with all of $w, x, y$ and $z$ having the same color. (Note that $w, x, y$ and $z$ need not be distinct.)
1994 Polish MO Finals, 1
$m, n$ are relatively prime. We have three jugs which contain $m$, $n$ and $m+n$ liters. Initially the largest jug is full of water. Show that for any $k$ in $\{1, 2, ... , m+n\}$ we can get exactly $k$ liters into one of the jugs.
2002 India IMO Training Camp, 9
On each day of their tour of the West Indies, Sourav and Srinath have either an apple or an orange for breakfast. Sourav has oranges for the first $m$ days, apples for the next $m$ days, followed by oranges for the next $m$ days, and so on. Srinath has oranges for the first $n$ days, apples for the next $n$ days, followed by oranges for the next $n$ days, and so on.
If $\gcd(m,n)=1$, and if the tour lasted for $mn$ days, on how many days did they eat the same kind of fruit?
2014 Germany Team Selection Test, 1
Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.
2008 USAMO, 3
Let $n$ be a positive integer. Denote by $S_n$ the set of points $(x, y)$ with integer coordinates such that \[ \left\lvert x\right\rvert + \left\lvert y + \frac{1}{2} \right\rvert < n. \] A path is a sequence of distinct points $(x_1 , y_1), (x_2, y_2), \ldots, (x_\ell, y_\ell)$ in $S_n$ such that, for $i = 2, \ldots, \ell$, the distance between $(x_i , y_i)$ and $(x_{i-1} , y_{i-1} )$ is $1$ (in other words, the points $(x_i, y_i)$ and $(x_{i-1} , y_{i-1} )$ are neighbors in the lattice of points with integer coordinates). Prove that the points in $S_n$ cannot be partitioned into fewer than $n$ paths (a partition of $S_n$ into $m$ paths is a set $\mathcal{P}$ of $m$ nonempty paths such that each point in $S_n$ appears in exactly one of the $m$ paths in $\mathcal{P}$).
2009 Iran MO (3rd Round), 6
Let $z$ be a complex non-zero number such that $Re(z),Im(z)\in \mathbb{Z}$.
Prove that $z$ is uniquely representable as $a_0+a_1(1+i)+a_2(1+i)^2+\dots+a_n(1+i)^n$ where $n\geq 0$ and $a_j \in \{0,1\}$ and $a_n=1$.
Time allowed for this problem was 1 hour.
1998 IMO Shortlist, 2
Let $n$ be an integer greater than 2. A positive integer is said to be [i]attainable [/i]if it is 1 or can be obtained from 1 by a sequence of operations with the following properties:
1.) The first operation is either addition or multiplication.
2.) Thereafter, additions and multiplications are used alternately.
3.) In each addition, one can choose independently whether to add 2 or $n$
4.) In each multiplication, one can choose independently whether to multiply by 2 or by $n$.
A positive integer which cannot be so obtained is said to be [i]unattainable[/i].
[b]a.)[/b] Prove that if $n\geq 9$, there are infinitely many unattainable positive integers.
[b]b.)[/b] Prove that if $n=3$, all positive integers except 7 are attainable.
2000 AIME Problems, 4
The diagram shows a rectangle that has been dissected into nine non-overlapping squares. Given that the width and the height of the rectangle are relatively prime positive integers, find the perimeter of the rectangle.
[asy]
defaultpen(linewidth(0.7));
draw((0,0)--(69,0)--(69,61)--(0,61)--(0,0));draw((36,0)--(36,36)--(0,36));
draw((36,33)--(69,33));draw((41,33)--(41,61));draw((25,36)--(25,61));
draw((34,36)--(34,45)--(25,45));
draw((36,36)--(36,38)--(34,38));
draw((36,38)--(41,38));
draw((34,45)--(41,45));[/asy]
2002 India IMO Training Camp, 12
Let $a,b$ be integers with $0<a<b$. A set $\{x,y,z\}$ of non-negative integers is [i]olympic[/i] if $x<y<z$ and if $\{z-y,y-x\}=\{a,b\}$. Show that the set of all non-negative integers is the union of pairwise disjoint olympic sets.
1994 IMO Shortlist, 3
Peter has three accounts in a bank, each with an integral number of dollars. He is only allowed to transfer money from one account to another so that the amount of money in the latter is doubled. Prove that Peter can always transfer all his money into two accounts. Can Peter always transfer all his money into one account?
2003 IMO Shortlist, 1
Let $A$ be a $101$-element subset of the set $S=\{1,2,\ldots,1000000\}$. Prove that there exist numbers $t_1$, $t_2, \ldots, t_{100}$ in $S$ such that the sets \[ A_j=\{x+t_j\mid x\in A\},\qquad j=1,2,\ldots,100 \] are pairwise disjoint.
2014 IberoAmerican, 3
Given a set $X$ and a function $f: X \rightarrow X$, for each $x \in X$ we define $f^1(x)=f(x)$ and, for each $j \ge 1$, $f^{j+1}(x)=f(f^j(x))$. We say that $a \in X$ is a fixed point of $f$ if $f(a)=a$. For each $x \in \mathbb{R}$, let $\pi (x)$ be the quantity of positive primes lesser or equal to $x$.
Given an positive integer $n$, we say that $f: \{1,2, \dots, n\} \rightarrow \{1,2, \dots, n\}$ is [i]catracha[/i] if $f^{f(k)}(k)=k$, for every $k=1, 2, \dots n$. Prove that:
(a) If $f$ is catracha, $f$ has at least $\pi (n) -\pi (\sqrt{n}) +1$ fixed points.
(b) If $n \ge 36$, there exists a catracha function $f$ with exactly $ \pi (n) -\pi (\sqrt{n}) + 1$ fixed points.
2009 USAMTS Problems, 1
Archimedes planned to count all of the prime numbers between $2$ and $1000$ using the Sieve of Eratosthenes as follows:
(a) List the integers from $2$ to $1000$.
(b) Circle the smallest number in the list and call this $p$.
(c) Cross out all multiples of $p$ in the list except for $p$ itself.
(d) Let $p$ be the smallest number remaining that is neither circled nor crossed out. Circle $p$.
(e) Repeat steps $(c)$ and $(d)$ until each number is either circled or crossed out.
At the end of this process, the circled numbers are prime and the crossed out numbers are composite.
Unfortunately, while crossing out the multiples of $2$, Archimedes accidentally crossed out two odd primes in addition to crossing out all the even numbers (besides $2$). Otherwise, he executed the algorithm correctly. If the number of circled numbers remaining when Archimedes finished equals the number of primes from $2$ to $1000$ (including $2$), then what is the largest possible prime that Archimedes accidentally crossed out?
1985 AIME Problems, 13
The numbers in the sequence 101, 104, 109, 116, $\dots$ are of the form $a_n = 100 + n^2$, where $n = 1$, 2, 3, $\dots$. For each $n$, let $d_n$ be the greatest common divisor of $a_n$ and $a_{n + 1}$. Find the maximum value of $d_n$ as $n$ ranges through the positive integers.
2005 Germany Team Selection Test, 3
We have $2p-1$ integer numbers, where $p$ is a prime number. Prove that we can choose exactly $p$ numbers (from these $2p-1$ numbers) so that their sum is divisible by $p$.
2013 All-Russian Olympiad, 4
$N$ lines lie on a plane, no two of which are parallel and no three of which are concurrent. Prove that there exists a non-self-intersecting broken line $A_0A_1A_2A_3...A_N$ with $N$ parts, such that on each of the $N$ lines lies exactly one of the $N$ segments of the line.
2010 Tournament Of Towns, 7
A multi-digit number is written on the blackboard. Susan puts in a number of plus signs between some pairs of adjacent digits. The addition is performed and the process is repeated with the sum. Prove that regardless of what number was initially on the blackboard, Susan can always obtain a single-digit number in at most ten steps.
2004 South africa National Olympiad, 1
Let $a=1111\dots1111$ and $b=1111\dots1111$ where $a$ has forty ones and $b$ has twelve ones. Determine the greatest common divisor of $a$ and $b$.
2013 Finnish National High School Mathematics Competition, 2
In a particular European city, there are only $7$ day tickets and $30$ day tickets to the public transport. The former costs $7.03$ euro and the latter costs $30$ euro. Aina the Algebraist decides to buy at once those tickets that she can travel by the public transport the whole three year (2014-2016, 1096 days) visiting in the city. What is the cheapest solution?
2009 Princeton University Math Competition, 8
Find the largest positive integer $k$ such that $\phi ( \sigma ( 2^k)) = 2^k$. ($\phi(n)$ denotes the number of positive integers that are smaller than $n$ and relatively prime to $n$, and $\sigma(n)$ denotes the sum of divisors of $n$). As a hint, you are given that $641|2^{32}+1$.
2003 IMO Shortlist, 2
Each positive integer $a$ undergoes the following procedure in order to obtain the number $d = d\left(a\right)$:
(i) move the last digit of $a$ to the first position to obtain the numb er $b$;
(ii) square $b$ to obtain the number $c$;
(iii) move the first digit of $c$ to the end to obtain the number $d$.
(All the numbers in the problem are considered to be represented in base $10$.) For example, for $a=2003$, we get $b=3200$, $c=10240000$, and $d = 02400001 = 2400001 = d(2003)$.)
Find all numbers $a$ for which $d\left( a\right) =a^2$.
[i]Proposed by Zoran Sunic, USA[/i]