This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 357

2010 Math Prize for Girls Olympiad, 4

Let $S$ be a set of $n$ points in the coordinate plane. Say that a pair of points is [i]aligned[/i] if the two points have the same $x$-coordinate or $y$-coordinate. Prove that $S$ can be partitioned into disjoint subsets such that (a) each of these subsets is a collinear set of points, and (b) at most $n^{3/2}$ unordered pairs of distinct points in $S$ are aligned but not in the same subset.

2018 Taiwan TST Round 2, 2

There are $n$ sheep and a wolf in sheep's clothing . Some of the sheep are friends (friendship is mutual). The goal of the wolf is to eat all the sheep. First, the wolf chooses some sheep to make friend's with. In each of the following days, the wolf eats one of its friends. Whenever the wolf eats a sheep $A$: (a) If a friend of $A$ is originally a friend of the wolf, it un-friends the wolf. (b) If a friend of $A$ is originally not a friend of the wolf, it becomes a friend of the wolf. Repeat the procedure until the wolf has no friend left. Find the largest integer $m$ in terms of $n$ satisfying the following: There exists an initial friendsheep structure such that the wolf has $m$ different ways of choosing initial sheep to become friends, so that the wolf has a way to eat all of the sheep.

2017 IMO, 5

An integer $N \ge 2$ is given. A collection of $N(N + 1)$ soccer players, no two of whom are of the same height, stand in a row. Sir Alex wants to remove $N(N - 1)$ players from this row leaving a new row of $2N$ players in which the following $N$ conditions hold: ($1$) no one stands between the two tallest players, ($2$) no one stands between the third and fourth tallest players, $\;\;\vdots$ ($N$) no one stands between the two shortest players. Show that this is always possible. [i]Proposed by Grigory Chelnokov, Russia[/i]

2008 China Team Selection Test, 1

Prove that in a plane, arbitrary $ n$ points can be overlapped by discs that the sum of all the diameters is less than $ n$, and the distances between arbitrary two are greater than $ 1$. (where the distances between two discs that have no common points are defined as that the distances between its centers subtract the sum of its radii; the distances between two discs that have common points are zero)

2004 Postal Coaching, 2

(a) Find all triples $(x,y,z)$ of positive integers such that $xy \equiv 2 (\bmod{z})$ , $yz \equiv 2 (\bmod{x})$ and $zx \equiv 2 (\bmod{y} )$ (b) Let $n \geq 1$ be an integer. Give an algoritm to determine all triples $(x,y,z)$ such that '2' in part (a) is replaced by 'n' in all three congruences.

2012 EGMO, 4

A set $A$ of integers is called [i]sum-full[/i] if $A \subseteq A + A$, i.e. each element $a \in A$ is the sum of some pair of (not necessarily different) elements $b,c \in A$. A set $A$ of integers is said to be [i]zero-sum-free[/i] if $0$ is the only integer that cannot be expressed as the sum of the elements of a finite nonempty subset of $A$. Does there exist a sum-full zero-sum-free set of integers? [i]Romania (Dan Schwarz)[/i]

2010 Contests, 3

Christian Reiher and Reid Barton want to open a security box, they already managed to discover the algorithm to generate the key codes and they obtained the following information: $i)$ In the screen of the box will appear a sequence of $n+1$ numbers, $C_0 = (a_{0,1},a_{0,2},...,a_{0,n+1})$ $ii)$ If the code $K = (k_1,k_2,...,k_n)$ opens the security box then the following must happen: a) A sequence $C_i = (a_{i,1},a_{i,2},...,a_{i,n+1})$ will be asigned to each $k_i$ defined as follows: $a_{i,1} = 1$ and $a_{i,j} = a_{i-1,j}-k_ia_{i,j-1}$, for $i,j \ge 1$ b) The sequence $(C_n)$ asigned to $k_n$ satisfies that $S_n = \sum_{i=1}^{n+1}|a_i|$ has its least possible value, considering all possible sequences $K$. The sequence $C_0$ that appears in the screen is the following: $a_{0,1} = 1$ and $a_0,i$ is the sum of the products of the elements of each of the subsets with $i-1$ elements of the set $A =$ {$1,2,3,...,n$}, $i\ge 2$, such that $a_{0, n+1} = n!$ Find a sequence $K = (k_1,k_2,...,k_n)$ that satisfies the conditions of the problem and show that there exists at least $n!$ of them.

2007 All-Russian Olympiad, 3

Arutyun and Amayak show another effective trick. A spectator writes down on a board a sequence of $N$ (decimal) digits. Amayak closes two adjacent digits by a black disc. Then Arutyun comes and says both closed digits (and their order). For which minimal $N$ they may show such a trick? [i]K. Knop, O. Leontieva[/i]

2016 CMIMC, 3

Sophia writes an algorithm to solve the graph isomorphism problem. Given a graph $G=(V,E)$, her algorithm iterates through all permutations of the set $\{v_1, \dots, v_{|V|}\}$, each time examining all ordered pairs $(v_i,v_j)\in V\times V$ to see if an edge exists. When $|V|=8$, her algorithm makes $N$ such examinations. What is the largest power of two that divides $N$?

2021 Azerbaijan IMO TST, 3

A magician intends to perform the following trick. She announces a positive integer $n$, along with $2n$ real numbers $x_1 < \dots < x_{2n}$, to the audience. A member of the audience then secretly chooses a polynomial $P(x)$ of degree $n$ with real coefficients, computes the $2n$ values $P(x_1), \dots , P(x_{2n})$, and writes down these $2n$ values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience. Can the magician find a strategy to perform such a trick?

2010 Iran MO (2nd Round), 1

Let $a,b$ be two positive integers and $a>b$.We know that $\gcd(a-b,ab+1)=1$ and $\gcd(a+b,ab-1)=1$. Prove that $(a-b)^2+(ab+1)^2$ is not a perfect square.

2017 Pakistan TST, Problem 2

There are $n$ students in a circle, one behind the other, all facing clockwise. The students have heights $h_1 <h_2 < h_3 < \cdots < h_n$. If a student with height $h_k$ is standing directly behind a student with height $h_{k-2}$ or lesss, the two students are permitted to switch places Prove that it is not possible to make more than $\binom{n}{3}$ such switches before reaching a position in which no further switches are possible.

2014 USAMTS Problems, 3b:

A group of people is lined up in [i]almost-order[/i] if, whenever person $A$ is to the left of person $B$ in the line, $A$ is not more than $8$ centimeters taller than $B$. For example, five people with heights $160, 165, 170, 175$, and $180$ centimeters could line up in [i]almost-order[/i] with heights (from left-to-right) of $160, 170, 165, 180, 175$ centimeters. (b) How many different ways are there to line up $20$ people in [i]almost-order[/i] if their heights are $120, 125, 130,$ $135,$ $140,$ $145,$ $150,$ $155,$ $160,$ $164, 165, 170, 175, 180, 185, 190, 195, 200, 205$, and $210$ centimeters? (Note that there is someone of height $164$ centimeters.)

2014 Contests, 1

Let $\leftarrow$ denote the left arrow key on a standard keyboard. If one opens a text editor and types the keys "ab$\leftarrow$ cd $\leftarrow \leftarrow$ e $\leftarrow \leftarrow$ f", the result is "faecdb". We say that a string $B$ is [i]reachable[/i] from a string $A$ if it is possible to insert some amount of $\leftarrow$'s in $A$, such that typing the resulting characters produces $B$. So, our example shows that "faecdb" is reachable from "abcdef". Prove that for any two strings $A$ and $B$, $A$ is reachable from $B$ if and only if $B$ is reachable from $A$.

1997 USAMO, 3

Prove that for any integer $n$, there exists a unique polynomial $Q$ with coefficients in $\{0,1,\ldots,9\}$ such that $Q(-2) = Q(-5) = n$.

2014 France Team Selection Test, 1

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

2009 JBMO TST - Macedonia, 4

In every $1\times1$ cell of a rectangle board a natural number is written. In one step it is allowed the numbers written in every cell of arbitrary chosen row, to be doubled, or the numbers written in the cells of the arbitrary chosen column to be decreased by 1. Will after final number of steps all the numbers on the board be $0$?

2014 Bundeswettbewerb Mathematik, 2

The $100$ vertices of a prism, whose base is a $50$-gon, are labeled with numbers $1, 2, 3, \ldots, 100$ in any order. Prove that there are two vertices, which are connected by an edge of the prism, with labels differing by not more than $48$. Note: In all the triangles the three vertices do not lie on a straight line.

1988 IMO Longlists, 65

The Fibonacci sequence is defined by \[ a_{n+1} = a_n + a_{n-1}, n \geq 1, a_0 = 0, a_1 = a_2 = 1. \] Find the greatest common divisor of the 1960-th and 1988-th terms of the Fibonacci sequence.

2000 IMO Shortlist, 5

Let $ n \geq 2$ be a positive integer and $ \lambda$ a positive real number. Initially there are $ n$ fleas on a horizontal line, not all at the same point. We define a move as choosing two fleas at some points $ A$ and $ B$, with $ A$ to the left of $ B$, and letting the flea from $ A$ jump over the flea from $ B$ to the point $ C$ so that $ \frac {BC}{AB} \equal{} \lambda$. Determine all values of $ \lambda$ such that, for any point $ M$ on the line and for any initial position of the $ n$ fleas, there exists a sequence of moves that will take them all to the position right of $ M$.

2011 Iran MO (3rd Round), 1

Suppose that $S\subseteq \mathbb Z$ has the following property: if $a,b\in S$, then $a+b\in S$. Further, we know that $S$ has at least one negative element and one positive element. Is the following statement true? There exists an integer $d$ such that for every $x\in \mathbb Z$, $x\in S$ if and only if $d|x$. [i]proposed by Mahyar Sefidgaran[/i]

1984 AIME Problems, 15

Determine $w^2+x^2+y^2+z^2$ if \[ \begin{array}{l} \displaystyle \frac{x^2}{2^2-1}+\frac{y^2}{2^2-3^2}+\frac{z^2}{2^2-5^2}+\frac{w^2}{2^2-7^2}=1 \\ \displaystyle \frac{x^2}{4^2-1}+\frac{y^2}{4^2-3^2}+\frac{z^2}{4^2-5^2}+\frac{w^2}{4^2-7^2}=1 \\ \displaystyle \frac{x^2}{6^2-1}+\frac{y^2}{6^2-3^2}+\frac{z^2}{6^2-5^2}+\frac{w^2}{6^2-7^2}=1 \\ \displaystyle \frac{x^2}{8^2-1}+\frac{y^2}{8^2-3^2}+\frac{z^2}{8^2-5^2}+\frac{w^2}{8^2-7^2}=1 \\ \end{array} \]

1994 IMO Shortlist, 4

There are $ n \plus{} 1$ cells in a row labeled from $ 0$ to $ n$ and $ n \plus{} 1$ cards labeled from $ 0$ to $ n$. The cards are arbitrarily placed in the cells, one per cell. The objective is to get card $ i$ into cell $ i$ for each $ i$. The allowed move is to find the smallest $ h$ such that cell $ h$ has a card with a label $ k > h$, pick up that card, slide the cards in cells $ h \plus{} 1$, $ h \plus{} 2$, ... , $ k$ one cell to the left and to place card $ k$ in cell $ k$. Show that at most $ 2^n \minus{} 1$ moves are required to get every card into the correct cell and that there is a unique starting position which requires $ 2^n \minus{} 1$ moves. [For example, if $ n \equal{} 2$ and the initial position is 210, then we get 102, then 012, a total of 2 moves.]

2015 Taiwan TST Round 2, 1

For a sequence $x_1,x_2,\ldots,x_n$ of real numbers, we define its $\textit{price}$ as \[\max_{1\le i\le n}|x_1+\cdots +x_i|.\] Given $n$ real numbers, Dave and George want to arrange them into a sequence with a low price. Diligent Dave checks all possible ways and finds the minimum possible price $D$. Greedy George, on the other hand, chooses $x_1$ such that $|x_1 |$ is as small as possible; among the remaining numbers, he chooses $x_2$ such that $|x_1 + x_2 |$ is as small as possible, and so on. Thus, in the $i$-th step he chooses $x_i$ among the remaining numbers so as to minimise the value of $|x_1 + x_2 + \cdots x_i |$. In each step, if several numbers provide the same value, George chooses one at random. Finally he gets a sequence with price $G$. Find the least possible constant $c$ such that for every positive integer $n$, for every collection of $n$ real numbers, and for every possible sequence that George might obtain, the resulting values satisfy the inequality $G\le cD$. [i]Proposed by Georgia[/i]

1993 IMO, 6

Let $n > 1$ be an integer. In a circular arrangement of $n$ lamps $L_0, \ldots, L_{n-1},$ each of of which can either ON or OFF, we start with the situation where all lamps are ON, and then carry out a sequence of steps, $Step_0, Step_1, \ldots .$ If $L_{j-1}$ ($j$ is taken mod $n$) is ON then $Step_j$ changes the state of $L_j$ (it goes from ON to OFF or from OFF to ON) but does not change the state of any of the other lamps. If $L_{j-1}$ is OFF then $Step_j$ does not change anything at all. Show that: (i) There is a positive integer $M(n)$ such that after $M(n)$ steps all lamps are ON again, (ii) If $n$ has the form $2^k$ then all the lamps are ON after $n^2-1$ steps, (iii) If $n$ has the form $2^k + 1$ then all lamps are ON after $n^2 - n + 1$ steps.