Found problems: 259
1983 Spain Mathematical Olympiad, 3
A semicircle of radius $r$ is divided into $n + 1$ equal parts and any point $k$ of the division with the ends of the semicircle forms a triangle $A_k$. Calculate the limit, as $n$ tends to infinity, of the arithmetic mean of the areas of the triangles.
1976 IMO Longlists, 8
In a convex quadrilateral (in the plane) with the area of $32 \text{ cm}^{2}$ the sum of two opposite sides and a diagonal is $16 \text{ cm}$. Determine all the possible values that the other diagonal can have.
2002 Tuymaada Olympiad, 8
The circle with the center of $ O $ touches the sides of the angle $ A $ at the points of $ K $ and $ M $. The tangent to the circle intersects the segments $ AK $ and $ AM $ at points $ B $ and $ C $ respectively, and the line $ KM $ intersects the segments $ OB $ and $ OC $ at the points $ D $ and $ E $. Prove that the area of the triangle $ ODE $ is equal to a quarter of the area of a triangle $ BOC $ if and only if the angle $ A $ is $ 60^\circ $.
2011 Abels Math Contest (Norwegian MO), 2b
The diagonals $AD, BE$, and $CF$ of a convex hexagon $ABCDEF$ intersect in a common point.
Show that $a(ABE) a(CDA) a(EFC) = a(BCE) a(DEA) a(FAC)$,
where $a(KLM)$ is the area of the triangle $KLM$.
[img]https://cdn.artofproblemsolving.com/attachments/0/a/bcbbddedde159150fe3c26b1f0a2bfc322aa1a.png[/img]
1991 Austrian-Polish Competition, 6
Suppose that there is a point $P$ inside a convex quadrilateral $ABCD$ such that the triangles $PAB$, $PBC$, $PCD$, $PDA$ have equal areas. Prove that one of the diagonals bisects the area of $ABCD$.
2023 SG Originals, Q5
A clock has an hour, minute, and second hand, all of length $1$. Let $T$ be the triangle formed by the ends of these hands. A time of day is chosen uniformly at random. What is the expected value of the area of $T$?
[i]Proposed by Dylan Toh[/i]
2020 USOMO, 1
Let $ABC$ be a fixed acute triangle inscribed in a circle $\omega$ with center $O$. A variable point $X$ is chosen on minor arc $AB$ of $\omega$, and segments $CX$ and $AB$ meet at $D$. Denote by $O_1$ and $O_2$ the circumcenters of triangles $ADX$ and $BDX$, respectively. Determine all points $X$ for which the area of triangle $OO_1O_2$ is minimized.
[i]Proposed by Zuming Feng[/i]
1995 IMO, 3
Determine all integers $ n > 3$ for which there exist $ n$ points $ A_{1},\cdots ,A_{n}$ in the plane, no three collinear, and real numbers $ r_{1},\cdots ,r_{n}$ such that for $ 1\leq i < j < k\leq n$, the area of $ \triangle A_{i}A_{j}A_{k}$ is $ r_{i} \plus{} r_{j} \plus{} r_{k}$.
1983 Canada National Olympiad, 3
The area of a triangle is determined by the lengths of its sides. Is the volume of a tetrahedron determined by the areas of its faces?
2008 Mathcenter Contest, 7
$ABC$ is a triangle with an area of $1$ square meter. Given the point $D$ on $BC$, point $E$ on $CA$, point $F$ on $AB$, such that quadrilateral $AFDE$ is cyclic. Prove that the area of $DEF \le \frac{EF^2}{4 AD^2}$.
[i](holmes)[/i]
1969 Canada National Olympiad, 4
Let $ABC$ be an equilateral triangle, and $P$ be an arbitrary point within the triangle. Perpendiculars $PD,PE,PF$ are drawn to the three sides of the triangle. Show that, no matter where $P$ is chosen, \[ \frac{PD+PE+PF}{AB+BC+CA}=\frac{1}{2\sqrt{3}}. \]
2015 Peru MO (ONEM), 2
Let $ABCDEF$ be a convex hexagon. The diagonal $AC$ is cut by $BF$ and $BD$ at points $P$ and $Q$, respectively. The diagonal $CE$ is cut by $DB$ and $DF$ at points $R$ and $S$, respectively. The diagonal $EA$ is cut by $FD$ and $FB$ at points $T$ and $U$, respectively. It is known that each of the seven triangles $APB, PBQ, QBC, CRD, DRS, DSE$ and $AUF$ has area $1$. Find the area of the hexagon $ABCDEF$.
1988 IMO Shortlist, 13
In a right-angled triangle $ ABC$ let $ AD$ be the altitude drawn to the hypotenuse and let the straight line joining the incentres of the triangles $ ABD, ACD$ intersect the sides $ AB, AC$ at the points $ K,L$ respectively. If $ E$ and $ E_1$ dnote the areas of triangles $ ABC$ and $ AKL$ respectively, show that
\[ \frac {E}{E_1} \geq 2.
\]
2003 German National Olympiad, 4
From the midpoints of the sides of an acute-angled triangle, perpendiculars are drawn to the adjacent sides. The resulting six straight lines bound the hexagon. Prove that its area is half the area of the original triangle.
2011 May Olympiad, 3
In the rectangle $ABCD, BC = 5, EC = 1/3 CD$ and $F$ is the point where $AE$ and $BD$ are cut. The triangle $DFE$ has area $12$ and the triangle $ABF$ has area $27$. Find the area of the quadrilateral $BCEF$ .
[img]https://1.bp.blogspot.com/-4w6e729AF9o/XNY9hqHaBaI/AAAAAAAAKL0/eCaNnWmgc7Yj9uV4z29JAvTcWCe21NIMgCK4BGAYYCw/s400/may%2B2011%2Bl1.png[/img]
2014 BMT Spring, 12
Suppose four coplanar points $A, B, C$, and $D$ satisfy $AB = 3$, $BC = 4$, $CA = 5$, and $BD = 6$. Determine the maximal possible area of $\vartriangle ACD$.
2003 May Olympiad, 2
The triangle $ABC$ is right in $A$ and $R$ is the midpoint of the hypotenuse $BC$ . On the major leg $AB$ the point $P$ is marked such that $CP = BP$ and on the segment $BP$ the point $Q$ is marked such that the triangle $PQR$ is equilateral. If the area of triangle $ABC$ is $27$, calculate the area of triangle $PQR$ .
1994 India Regional Mathematical Olympiad, 2
In a triangle $ABC$, the incircle touches the sides $BC, CA, AB$ at $D, E, F$ respectively. If the radius if the incircle is $4$ units and if $BD, CE , AF$ are consecutive integers, find the sides of the triangle $ABC$.
2005 ISI B.Math Entrance Exam, 7
Let $M$ be a point in the triangle $ABC$ such that
\[\text{area}(ABM)=2 \cdot \text{area}(ACM)\]
Show that the locus of all such points is a straight line.
1964 AMC 12/AHSME, 35
The sides of a triangle are of lengths $13$, $14$, and $15$. The altitudes of the triangle meet at point $H$. If $AD$ is the altitude to the side length $14$, what is the ratio $HD:HA$?
$\textbf{(A) } 3 : 11\qquad
\textbf{(B) } 5 : 11\qquad
\textbf{(C) } 1 : 2\qquad
\textbf{(D) }2 : 3\qquad
\textbf{(E) }25 : 33$
2005 USAMTS Problems, 3
Points $A, B,$ and $C$ are on a circle such that $\triangle ABC$ is an acute triangle. $X, Y ,$ and $Z$ are on the circle such that $AX$ is perpendicular to $BC$ at $D$, $BY$ is perpendicular to $AC$ at $E$, and $CZ$ is perpendicular to $AB$ at $F$. Find the value of \[ \frac{AX}{AD}+\frac{BY}{BE}+\frac{CZ}{CF}, \] and prove that this value is the same for all possible $A, B, C$ on the circle such that $\triangle ABC$ is acute.
[asy]
pathpen = linewidth(0.7);
pair B = (0,0), C = (10,0), A = (2.5,8); path cir = circumcircle(A,B,C);
pair D = foot(A,B,C), E = foot(B,A,C), F = foot(C,A,B), X = IP(D--2*D-A,cir), Y = IP(E--2*E-B,cir), Z = IP(F--2*F-C,cir); D(MP("A",A,N)--MP("B",B,SW)--MP("C",C,SE)--cycle); D(cir); D(A--MP("X",X)); D(B--MP("Y",Y,NE)); D(C--MP("Z",Z,NW)); D(rightanglemark(B,F,C,12)); D(rightanglemark(A,D,B,12)); D(rightanglemark(B,E,C,12));[/asy]
1973 Putnam, A1
(a) Let $ABC$ be any triangle. Let $X, Y, Z$ be points on the sides $BC, CA, AB$ respectively.
Suppose that $BX \leq XC, CY \leq YA, AZ \leq ZB$. Show that the area of the triangle $XYZ$ $\geq 1\slash 4$ times the area of $ABC.$
(b) Let $ABC$ be any triangle, and let $X, Y, Z$ be points on the sides $BC, CA, AB$ respectively. Using (a) or by any other method, show: One of the three corner triangles $AZY, BXZ, CYX$ has an area $\leq$ area of the triangle $XYZ.$
2000 Croatia National Olympiad, Problem 4
Let $ABCD$ be a square with side $20$ and $T_1, T_2, ..., T_{2000}$ are points in $ABCD$ such that no $3$ points in the set $S = \{A, B, C, D, T_1, T_2, ..., T_{2000}\}$ are collinear. Prove that there exists a triangle with vertices in $S$, such that the area is less than $1/10$.
2002 AMC 10, 13
The sides of a triangle have lengths of $ 15$, $ 20$, and $ 25$. Find the length of the shortest altitude.
$ \text{(A)}\ 6 \qquad
\text{(B)}\ 12 \qquad
\text{(C)}\ 12.5 \qquad
\text{(D)}\ 13 \qquad
\text{(E)}\ 15$
1963 AMC 12/AHSME, 35
The lengths of the sides of a triangle are integers, and its area is also an integer. One side is $21$ and the perimeter is $48$. The shortest side is:
$\textbf{(A)}\ 8 \qquad
\textbf{(B)}\ 10\qquad
\textbf{(C)}\ 12 \qquad
\textbf{(D)}\ 14 \qquad
\textbf{(E)}\ 16$