This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 93

2010 Peru MO (ONEM), 2

An arithmetic progression is formed by $9$ positive integers such that the product of these $9$ terms is a multiple of $3$. Prove that said product is also multiple of $81$.

2020 Estonia Team Selection Test, 1

Let $a_1, a_2,...$ a sequence of real numbers. For each positive integer $n$, we denote $m_n =\frac{a_1 + a_2 +... + a_n}{n}$. It is known that there exists a real number $c$ such that for any different positive integers $i, j, k$: $(i - j) m_k + (j - k) m_i + (k - i) m_j = c$. Prove that the sequence $a_1, a_2,..$ is arithmetic

1983 IMO Longlists, 50

Is it possible to choose $1983$ distinct positive integers, all less than or equal to $10^5$, no three of which are consecutive terms of an arithmetic progression?

1992 India National Olympiad, 7

Let $n\geq 3$ be an integer. Find the number of ways in which one can place the numbers $1, 2, 3, \ldots, n^2$ in the $n^2$ squares of a $n \times n$ chesboard, one on each, such that the numbers in each row and in each column are in arithmetic progression.

1955 Moscow Mathematical Olympiad, 313

On the numerical line, arrange a system of closed segments of length $1$ without common points (endpoints included) so that any infinite arithmetic progression with any non zero difference and any first term has a common point with a segment of the system.

1997 Spain Mathematical Olympiad, 1

Compute the sum of the squares of the first $100$ terms of an arithmetic progression, given that their sum is $-1$ and that the sum of those among them having an even index is $1$.

2022 Kyiv City MO Round 1, Problem 4

You are given $n\ge 4$ positive real numbers. It turned out that all $\frac{n(n-1)}{2}$ of their pairwise products form an arithmetic progression in some order. Show that all given numbers are equal. [i](Proposed by Anton Trygub)[/i]

2015 Silk Road, 2

Let $\left\{ {{a}_{n}} \right\}_{n \geq 1}$ and $\left\{ {{b}_{n}} \right\}_{n \geq 1}$ be two infinite arithmetic progressions, each of which the first term and the difference are mutually prime natural numbers. It is known that for any natural $n$, at least one of the numbers $\left( a_n^2+a_{n+1}^2 \right)\left( b_n^2+b_{n+1}^2 \right) $ or $\left( a_n^2+b_n^2 \right) \left( a_{n+1}^2+b_{n+1}^2 \right)$ is an perfect square. Prove that ${{a}_{n}}={{b}_{n}}$, for any natural $n$ .

2024 Romania National Olympiad, 4

Let $a$ be a given positive integer. We consider the sequence $(x_n)_{n \ge 1}$ defined by $x_n=\frac{1}{1+na},$ for every positive integer $n.$ Prove that for any integer $k \ge 3,$ there exist positive integers $n_1<n_2<\ldots<n_k$ such that the numbers $x_{n_1},x_{n_2},\ldots,x_{n_k}$ are consecutive terms in an arithmetic progression.

2021 Romanian Master of Mathematics Shortlist, C1

Determine the largest integer $n\geq 3$ for which the edges of the complete graph on $n$ vertices can be assigned pairwise distinct non-negative integers such that the edges of every triangle have numbers which form an arithmetic progression.

2017 Singapore MO Open, 4

Let $n > 3$ be an integer. Prove that there exist positive integers $x_1,..., x_n$ in geometric progression and positive integers $y_1,..., y_n$ in arithmetic progression such that $x_1<y_1<x_2<y_2<...<x_n<y_n$

1978 Romania Team Selection Test, 5

Prove that there is no square with its four vertices on four concentric circles whose radii form an arithmetic progression.

2016 Costa Rica - Final Round, LR3

Consider an arithmetic progression made up of $100$ terms. If the sum of all the terms of the progression is $150$ and the sum of the even terms is $50$, find the sum of the squares of the $100$ terms of the progression.

2008 Bulgarian Autumn Math Competition, Problem 11.1

Let $a_{1},a_{2},\ldots$ be an infinite arithmetic progression. It's known that there exist positive integers $p,q,t$ such that $a_{p}+tp=a_{q}+tq$. If $a_{t}=t$ and the sum of the first $t$ numbers in the sequence is $18$, determine $a_{2008}$.

2020 Nordic, 1

For a positive integer $n$, denote by $g(n)$ the number of strictly ascending triples chosen from the set $\{1, 2, ..., n\}$. Find the least positive integer $n$ such that the following holds:[i] The number $g(n)$ can be written as the product of three different prime numbers which are (not necessarily consecutive) members in an arithmetic progression with common difference $336$.[/i]

1923 Eotvos Mathematical Competition, 3

Prove that, if the terms of an infinite arithmetic progression of natural numbers are not all equal, they cannot all be primes.

2015 Estonia Team Selection Test, 1

Let $n$ be a natural number, $n \ge 5$, and $a_1, a_2, . . . , a_n$ real numbers such that all possible sums $a_i + a_j$, where $1 \le i < j \le n$, form $\frac{n(n-1)}{2}$ consecutive members of an arithmetic progression when taken in some order. Prove that $a_1 = a_2 = . . . = a_n$.

1980 Austrian-Polish Competition, 1

Given three infinite arithmetic progressions of natural numbers such that each of the numbers 1,2,3,4,5,6,7 and 8 belongs to at least one of them, prove that the number 1980 also belongs to at least one of them.

Kvant 2020, M2627

An infinite arithmetic progression is given. The products of the pairs of its members are considered. Prove that two of these numbers differ by no more than 1. [i]Proposed by A. Kuznetsov[/i]

2015 Junior Balkan Team Selection Tests - Romania, 3

Can we partition the positive integers in two sets such that none of the sets contains an infinite arithmetic progression of nonzero ratio ?

2020 Estonia Team Selection Test, 1

Let $a_1, a_2,...$ a sequence of real numbers. For each positive integer $n$, we denote $m_n =\frac{a_1 + a_2 +... + a_n}{n}$. It is known that there exists a real number $c$ such that for any different positive integers $i, j, k$: $(i - j) m_k + (j - k) m_i + (k - i) m_j = c$. Prove that the sequence $a_1, a_2,..$ is arithmetic

1974 Chisinau City MO, 77

Is it possible to simultaneously take away on eight three-ton vehicles $50$ stones, the weight of which is respectively equal to $416, 418, 420, .., 512, 514$ kg?

2004 Argentina National Olympiad, 6

Decide if it is possible to generate an infinite sequence of positive integers $a_n$ such that in the sequence there are no three terms that are in arithmetic progression and that for all $n$ $\left |a_n-n^2\right | &lt;\frac{n}{2}$. Clarification: Three numbers $a$, $b$, $c$ are in arithmetic progression if and only if $2b=a+c$.

1935 Moscow Mathematical Olympiad, 008

Prove that if the lengths of the sides of a triangle form an arithmetic progression, then the radius of the inscribed circle is one third of one of the heights of the triangle.

2019 District Olympiad, 3

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of real numbers such that $$2(a_1+a_2+…+a_n)=na_{n+1}~\forall~n \ge 1.$$ $\textbf{a)}$ Prove that the given sequence is an arithmetic progression. $\textbf{b)}$ If $\lfloor a_1 \rfloor + \lfloor a_2 \rfloor +…+ \lfloor a_n \rfloor = \lfloor a_1+a_2+…+a_n \rfloor~\forall~ n \in \mathbb{N},$ prove that every term of the sequence is an integer.