Found problems: 492
2020 USAMTS Problems, 5:
Let $n \geq 3$ be an integer. Let $f$ be a function from the set of all integers to itself with the following property: If the integers $a_1,a_2,\ldots,a_n$ form an arithmetic progression, then the numbers
$$f(a_1),f(a_2),\ldots,f(a_n)$$
form an arithmetic progression (possibly constant) in some order. Find all values for $n$ such that the only functions $f$ with this property are the functions of the form $f(x)=cx+d$, where $c$ and $d$ are integers.
1999 National High School Mathematics League, 15
Given positive integer $n$ and positive number $M$. For all arithmetic squence $a_1,a_2,\cdots,$ that $a_1^2+a_{n+1}^2\leq M$, find the maximum value of $S=a_{n+1}+a_{n+2}+\cdots,a_{2n+1}$.
2007 German National Olympiad, 4
Find all triangles such that its angles form an arithmetic sequence and the corresponding sides form a geometric sequence.
2014 India Regional Mathematical Olympiad, 2
The roots of the equation
\[ x^3-3ax^2+bx+18c=0 \]
form a non-constant arithmetic progression and the roots of the equation
\[ x^3+bx^2+x-c^3=0 \]
form a non-constant geometric progression. Given that $a,b,c$ are real numbers, find all positive integral values $a$ and $b$.
1999 Yugoslav Team Selection Test, Problem 4
For a natural number $d$, $M_d$ denotes the set of natural numbers which are not representable as the sum of at least two consecutive terms of an arithmetic progression with the common difference d whose terms are integers. Prove that each $c\in M_3$ can be written in the form $c=ab$, where $a\in M_1$ and $b\in M_2\setminus\{2\}$.
1988 AMC 8, 19
What is the $100th$ number in the arithmetic sequence: $ 1,5,9,13,17,21,25,... $
$ \text{(A)}\ 397\qquad\text{(B)}\ 399\qquad\text{(C)}\ 401\qquad\text{(D)}\ 403\qquad\text{(E)}\ 405 $
1980 IMO Shortlist, 13
Given three infinite arithmetic progressions of natural numbers such that each of the numbers 1,2,3,4,5,6,7 and 8 belongs to at least one of them, prove that the number 1980 also belongs to at least one of them.
2017 CCA Math Bonanza, L3.3
An acute triangle $ABC$ has side lenghths $a$, $b$, $c$ such that $a$, $b$, $c$ forms an arithmetic sequence. Given that the area of triangle $ABC$ is an integer, what is the smallest value of its perimeter?
[i]2017 CCA Math Bonanza Lightning Round #3.3[/i]
2010 Slovenia National Olympiad, 4
For real numbers $a, b$ and $c$ we have
\[(2b-a)^2 + (2b-c)^2 = 2(2b^2-ac).\]
Prove that the numbers $a, b$ and $c$ are three consecutive terms in some arithmetic sequence.
2004 Unirea, 2
Find the arithmetic sequences of $ 5 $ integers $ n_1,n_2,n_3,n_4,n_5 $ that verify $ 5|n_1,2|n_2,11|n_3,7|n_4,17|n_5. $
2017 Philippine MO, 3
Each of the numbers in the set \(A = \{1,2, \cdots, 2017\}\) is colored either red or white. Prove that for \(n \geq 18\), there exists a coloring of the numbers in \(A\) such that any of its n-term arithmetic sequences contains both colors.
2014 Czech-Polish-Slovak Match, 2
For the positive integers $a, b, x_1$ we construct the sequence of numbers $(x_n)_{n=1}^{\infty}$ such that $x_n = ax_{n-1} + b$ for each $n \ge 2$. Specify the conditions for the given numbers $a, b$ and $x_1$ which are necessary and sufficient for all indexes $m, n$ to apply the implication $m | n \Rightarrow x_m | x_n$.
(Jaromír Šimša)
2013 USAMTS Problems, 4
Bunbury the bunny is hopping on the positive integers. First, he is told a positive integer $n$. Then Bunbury chooses positive integers $a,d$ and hops on all of the spaces $a,a+d,a+2d,\dots,a+2013d$. However, Bunbury must make these choices so that the number of every space that he hops on is less than $n$ and relatively prime to $n$.
A positive integer $n$ is called [i]bunny-unfriendly[/i] if, when given that $n$, Bunbury is unable to find positive integers $a,d$ that allow him to perform the hops he wants. Find the maximum bunny-unfriendly integer, or prove that no such maximum exists.
2016 AMC 10, 24
How many four-digit integers $abcd$, with $a \neq 0$, have the property that the three two-digit integers $ab<bc<cd$ form an increasing arithmetic sequence? One such number is $4692$, where $a=4$, $b=6$, $c=9$, and $d=2$.
$\textbf{(A)}\ 9\qquad\textbf{(B)}\ 15\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 17\qquad\textbf{(E)}\ 20$
2017 Israel Oral Olympiad, 7
The numbers $1,...,100$ are written on the board. Tzvi wants to colour $N$ numbers in blue, such that any arithmetic progression of length 10 consisting of numbers written on the board will contain blue number. What is the least possible value of $N$?
2015 NZMOC Camp Selection Problems, 5
Let $n$ be a positive integer greater than or equal to $6$, and suppose that $a_1, a_2, ...,a_n$ are real numbers such that the sums $a_i + a_j$ for $1 \le i<j\le n$, taken in some order, form consecutive terms of an arithmetic progression $A$, $A + d$, $...$ ,$A + (k-1)d$, where $k = n(n-1)/2$. What are the possible values of $d$?
2005 Gheorghe Vranceanu, 3
Within an arithmetic progression of length $ 2005, $ find the number of arithmetic subprogressions of length $ 501 $ that don't contain the $ \text{1000-th} $ term of the progression.
1983 IMO Longlists, 50
Is it possible to choose $1983$ distinct positive integers, all less than or equal to $10^5$, no three of which are consecutive terms of an arithmetic progression?
2011 IFYM, Sozopol, 4
Prove that the set $\{1,2,…,12001\}$ can be partitioned into 5 groups so that none of them contains an arithmetic progression with length 11.
2019 Turkey MO (2nd round), 2
Let $d(n)$ denote the number of divisors of a positive integer $n$. If $k$ is a given odd number, prove that there exist an increasing arithmetic progression in positive integers $(a_1,a_2,\ldots a_{2019}) $ such that $gcd(k,d(a_1)d(a_2)\ldots d(a_{2019})) =1$
2003 IMO, 5
Let $n$ be a positive integer and let $x_1\le x_2\le\cdots\le x_n$ be real numbers.
Prove that
\[
\left(\sum_{i,j=1}^{n}|x_i-x_j|\right)^2\le\frac{2(n^2-1)}{3}\sum_{i,j=1}^{n}(x_i-x_j)^2.
\]
Show that the equality holds if and only if $x_1, \ldots, x_n$ is an arithmetic sequence.
2002 India IMO Training Camp, 17
Let $n$ be a positive integer and let $(1+iT)^n=f(T)+ig(T)$ where $i$ is the square root of $-1$, and $f$ and $g$ are polynomials with real coefficients. Show that for any real number $k$ the equation $f(T)+kg(T)=0$ has only real roots.
2014 AMC 12/AHSME, 14
Let $a<b<c$ be three integers such that $a,b,c$ is an arithmetic progression and $a,c,b$ is a geometric progression. What is the smallest possible value of $c$?
$\textbf{(A) }-2\qquad
\textbf{(B) }1\qquad
\textbf{(C) }2\qquad
\textbf{(D) }4\qquad
\textbf{(E) }6\qquad$
2005 AMC 12/AHSME, 13
In the five-sided star shown, the letters $A,B,C,D,$ and $E$ are replaced by the numbers $3,5,6,7,$ and $9$, although not necessarily in this order. The sums of the numbers at the ends of the line segments $\overline{AB}$,$\overline{BC}$,$\overline{CD}$,$\overline{DE}$, and $\overline{EA}$ form an arithmetic sequence, although not necessarily in this order. What is the middle term of the arithmetic sequence?
[asy]
size(150);
defaultpen(linewidth(0.8));
string[] strng = {'A','D','B','E','C'};
pair A=dir(90),B=dir(306),C=dir(162),D=dir(18),E=dir(234);
draw(A--B--C--D--E--cycle);
for(int i=0;i<=4;i=i+1)
{
path circ=circle(dir(90-72*i),0.125);
unfill(circ);
draw(circ);
label("$"+strng[i]+"$",dir(90-72*i));
}
[/asy]
$ \textbf{(A)}\ 9\qquad
\textbf{(B)}\ 10\qquad
\textbf{(C)}\ 11\qquad
\textbf{(D)}\ 12\qquad
\textbf{(E)}\ 13$
2006 Federal Competition For Advanced Students, Part 1, 4
Given is the function $ f\equal{} \lfloor x^2 \rfloor \plus{} \{ x \}$ for all positive reals $ x$. ( $ \lfloor x \rfloor$ denotes the largest integer less than or equal $ x$ and $ \{ x \} \equal{} x \minus{} \lfloor x \rfloor$.)
Show that there exists an arithmetic sequence of different positive rational numbers, which all have the denominator $ 3$, if they are a reduced fraction, and don’t lie in the range of the function $ f$.