This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 21

2014 Finnish National High School Mathematics, 3

The points $P = (a, b)$ and $Q = (c, d)$ are in the first quadrant of the $xy$ plane, and $a, b, c$ and $d$ are integers satisfying $a < b, a < c, b < d$ and $c < d$. A route from point $P$ to point $Q$ is a broken line consisting of unit steps in the directions of the positive coordinate axes. An allowed route is a route not touching the line $x = y$. Tetermine the number of allowed routes.

1956 Moscow Mathematical Olympiad, 322

A closed self-intersecting broken line intersects each of its segments once. Prove that the number of its segments is even.

2019 Nigerian Senior MO Round 4, 3

An ant is moving on the cooridnate plane, starting form point $(0,-1)$ along a straight line until it reaches the $x$- axis at point $(x,0)$ where $x$ is a real number. After it turns $90^o$ to the left and moves again along a straight line until it reaches the $y$-axis . Then it again turns left and moves along a straight line until it reaches the $x$-axis, where it once more turns left by $90^o$ and moves along a straight line until it finally reached the $y$-axis. Can both the length of the ant's journey and distance between it's initial and final point be: (a) rational numbers ? (b) integers? Justify your answers PS. Collected [url=https://artofproblemsolving.com/community/c949609_2019_nigerian_senior_mo_round_4]here[/url]

1997 Tournament Of Towns, (561) 2

Which of the following statements are true? (a) If a polygon can be divided into two congruent polygons by a broken line segment, it can be divided into two congruent polygons by a straight line segment. (b) If a convex polygon can be divided into two congruent polygons by a broken line segment, it can be so divided by a straight line segment. (c) If a convex polygon can be divided into two polygons by a broken line segment, one of which can be mapped onto the other by a combination of rotations and translations, it can be so divided by a straight line segment. (S Markelov,)

2019 Pan-African, 5

A square is divided into $N^2$ equal smaller non-overlapping squares, where $N \geq 3$. We are given a broken line which passes through the centres of all the smaller squares (such a broken line may intersect itself). [list] [*] Show that it is possible to find a broken line composed of $4$ segments for $N = 3$. [*] Find the minimum number of segments in this broken line for arbitrary $N$. [/list]

1992 Tournament Of Towns, (346) 4

On the plane is give a broken line $ABCD$ in which $AB = BC = CD = 1$, and $AD$ is not equal to $1$. The positions of $B$ and $C$ are fixed but $A$ and $D$ change their positions in turn according to the following rule (preserving the distance rules given): the point $A$ is reflected with respect to the line $BD$, then $D$ is reflected with respect to the line $AC$ (in which $A$ occupies its new position), then $A$ is reflected with respect to the line $BD$ ($D$ occupying its new position), $D$ is reflected with respect to the line $AC$, and so on. Prove that after several steps $A$ and $D$ coincide with their initial positions. (M Kontzewich)

1956 Moscow Mathematical Olympiad, 331

Given a closed broken line $A_1A_2A_3...A_n$ in space and a plane intersecting all its segments, $A_1A_2$ at $B_1, A_2A_3$ at $B_2$ ,$... $, $A_nA_1$ at $B_n$, prove that $$\frac{A_1B_1}{B_1A_2}\cdot \frac{A_2B_2}{B_2A_3}\cdot \frac{A_3B_3}{B_3A_4}\cdot ...\cdot \frac{A_nB_n}{B_nA_1}= 1$$.

2013 Tournament of Towns, 7

A closed broken self-intersecting line is drawn in the plane. Each of the links of this line is intersected exactly once and no three links intersect at the same point. Further, there are no self-intersections at the vertices and no two links have a common segment. Can it happen that every point of self-intersection divides both links in halves?

2014 Contests, 3

The points $P = (a, b)$ and $Q = (c, d)$ are in the first quadrant of the $xy$ plane, and $a, b, c$ and $d$ are integers satisfying $a < b, a < c, b < d$ and $c < d$. A route from point $P$ to point $Q$ is a broken line consisting of unit steps in the directions of the positive coordinate axes. An allowed route is a route not touching the line $x = y$. Tetermine the number of allowed routes.

2006 Sharygin Geometry Olympiad, 10.1

Five lines go through one point. Prove that there exists a closed five-segment polygonal line, the vertices and the middle of the segments of which lie on these lines, and each line has exactly one vertex.

1982 Tournament Of Towns, (021) 2

A square is subdivided into $K^2$ equal smaller squares. We are given a broken line which passes through the centres of all the smaller squares (such a broken line may intersect itself). Find the minimum number of links in this broken line. (A Andjans, Riga)

1958 November Putnam, B5

Tags: broken line
The lengths of successive segments of a broken line are represented by the successive terms of the harmonic progression $1, 1\slash 2, 1\slash 3, \ldots.$ Each segment makes with the preceding a given angle $\theta.$ What is the distance and what is the direction of the limiting points (if there is one) from the initial point of the first segment?

1992 Tournament Of Towns, (334) 2

Let $a$ and $S$ be the length of the side and the area of regular triangle inscribed in a circle of radius $1$. A closed broken line $A_1A_2...A_{51}A_1$ consisting of $51$ segments of the same length $a$ is placed inside the circle. Prove that the sum of areas of the $ 51$ triangles between the neighboring segments $$A_1A_2A_3, A_2A_3A_4,..., A_{49}A_{50}A_{51}, A_{50}A_{51}A_1, A_{51}A_1A_2$$ is not less than $3S$. (A. Berzinsh, Riga)

1982 All Soviet Union Mathematical Olympiad, 336

The closed broken line $M$ has odd number of vertices -- $A_1,A_2,..., A_{2n+1}$ in sequence. Let us denote with $S(M)$ a new closed broken line with vertices $B_1,B_2,...,B_{2n+1}$ -- the midpoints of the first line links: $B_1$ is the midpoint of $[A_1A_2], ... , B_{2n+1}$ -- of $[A_{2n+1}A_1]$. Prove that in a sequence $M_1=S(M), ... , M_k = S(M_{k-1}), ...$ there is a broken line, homothetic to the $M$.

1987 All Soviet Union Mathematical Olympiad, 448

Given two closed broken lines in the plane with odd numbers of edges. All the lines, containing those edges are different, and not a triple of them intersects in one point. Prove that it is possible to chose one edge from each line such, that the chosen edges will be the opposite sides of a convex quadrangle.

1988 All Soviet Union Mathematical Olympiad, 481

A polygonal line connects two opposite vertices of a cube with side $2$. Each segment of the line has length $3$ and each vertex lies on the faces (or edges) of the cube. What is the smallest number of segments the line can have?

2004 Oral Moscow Geometry Olympiad, 2

Is there a closed self-intersecting broken line in space that intersects each of its links exactly once, and in its midpoint ?

1987 Tournament Of Towns, (153) 4

We are given a figure bounded by arc $AC$ of a circle, and a broken line $ABC$, with the arc and broken line being on opposite sides of the chord $AC$. Construct a line passing through the mid-point of arc $AC$ and dividing the area of the figure into two regions of equal area.

1988 All Soviet Union Mathematical Olympiad, 483

A polygonal line with a finite number of segments has all its vertices on a parabola. Any two adjacent segments make equal angles with the tangent to the parabola at their point of intersection. One end of the polygonal line is also on the axis of the parabola. Show that the other vertices of the polygonal line are all on the same side of the axis.

2019 Pan-African Shortlist, C3

A square is divided into $N^2$ equal smaller non-overlapping squares, where $N \geq 3$. We are given a broken line which passes through the centres of all the smaller squares (such a broken line may intersect itself). [list] [*] Show that it is possible to find a broken line composed of $4$ segments for $N = 3$. [*] Find the minimum number of segments in this broken line for arbitrary $N$. [/list]

1957 Moscow Mathematical Olympiad, 358

The segments of a closed broken line in space are of equal length, and each three consecutive segments are mutually perpendicular. Prove that the number of segments is divisible by $6$.