This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2005 Today's Calculation Of Integral, 85

Evaluate \[\lim_{n\to\infty} \int_0^{\frac{\pi}{2}} \frac{[n\sin x]}{n}\ dx\] where $ [x] $ is the integer equal to $ x $ or less than $ x $.

2022 Brazil Undergrad MO, 1

Let $0<a<1$. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ continuous at $x = 0$ such that $f(x) + f(ax) = x,\, \forall x \in \mathbb{R}$

2007 Today's Calculation Of Integral, 199

Let $m,\ n$ be non negative integers. Calculate \[\sum_{k=0}^{n}(-1)^{k}\frac{n+m+1}{k+m+1}\ nC_{k}. \] where $_{i}C_{j}$ is a binomial coefficient which means $\frac{i\cdot (i-1)\cdots(i-j+1)}{j\cdot (j-1)\cdots 2\cdot 1}$.

2014 ELMO Shortlist, 1

In a non-obtuse triangle $ABC$, prove that \[ \frac{\sin A \sin B}{\sin C} + \frac{\sin B \sin C}{\sin A} + \frac{\sin C \sin A}{ \sin B} \ge \frac 52. \][i]Proposed by Ryan Alweiss[/i]

2012 Today's Calculation Of Integral, 774

Find the real number $a$ such that $\int_0^a \frac{e^x+e^{-x}}{2}dx=\frac{12}{5}.$

2010 Today's Calculation Of Integral, 633

Let $f(x)$ be a differentiable function. Find the value of $x$ for which \[\{f(x)\}^2+(e+1)f(x)+1+e^2-2\int_0^x f(t)dt-2f(x)\int_0^x f(t)dt+2\left\{\int_0^x f(t)dt\right\}^2\] is minimized. [i]1978 Tokyo Medical College entrance exam[/i]

1991 Federal Competition For Advanced Students, P2, 6

Find the number of ten-digit natural numbers (which do not start with zero) containing no block $ 1991$.

2011 Today's Calculation Of Integral, 694

Prove the following inequality: \[\int_1^e \frac{(\ln x)^{2009}}{x^2}dx>\frac{1}{2010\cdot 2011\cdot2012}\] created by kunny

2006 Australia National Olympiad, 2

Let $f$ be a function defined on the positive integers, taking positive integral values, such that $f(a)f(b) = f(ab)$ for all positive integers $a$ and $b$, $f(a) < f(b)$ if $a < b$, $f(3) \geq 7$. Find the smallest possible value of $f(3)$.

2011 Today's Calculation Of Integral, 686

Let $L$ be a positive constant. For a point $P(t,\ 0)$ on the positive part of the $x$ axis on the coordinate plane, denote $Q(u(t),\ v(t))$ the point at which the point reach starting from $P$ proceeds by distance $L$ in counter-clockwise on the perimeter of a circle passing the point $P$ with center $O$. (1) Find $u(t),\ v(t)$. (2) For real number $a$ with $0<a<1$, find $f(a)=\int_a^1 \sqrt{\{u'(t)\}^2+\{v'(t)\}^2}\ dt$. (3) Find $\lim_{a\rightarrow +0} \frac{f(a)}{\ln a}$. [i]2011 Tokyo University entrance exam/Science, Problem 3[/i]

2024 Romania National Olympiad, 3

Let $f:[0,1] \to \mathbb{R}$ be a continuous function with $f(1)=0.$ Prove that the limit $$\lim_{t \nearrow 1} \left( \frac{1}{1-t} \int\limits_0^1x(f(tx)-f(x)) \mathrm{d}x\right)$$ exists and find its value.

2011 Today's Calculation Of Integral, 709

Evaluate $ \int_0^1 \frac{x}{1\plus{}x}\sqrt{1\minus{}x^2}\ dx$.

2013 Today's Calculation Of Integral, 896

Given sequences $a_n=\frac{1}{n}{\sqrt[n] {_{2n}P_n}},\ b_n=\frac{1}{n^2}{\sqrt[n] {_{4n}P_{2n}}}$ and $c_n=\sqrt[n]{\frac{_{8n}P_{4n}}{_{6n}P_{4n}}}$, find $\lim_{n\to\infty} a_n,\ \lim_{n\to\infty} b_n$and $\lim_{n\to\infty} c_n.$

1976 USAMO, 2

If $ A$ and $ B$ are fixed points on a given circle and $ XY$ is a variable diameter of the same circle, determine the locus of the point of intersection of lines $ AX$ and $ BY$. You may assume that $ AB$ is not a diameter.

1991 Arnold's Trivium, 80

Solve the equation \[\int_0^1(x+y)^2u(x)dx=\lambda u(y)+1\]

2006 Putnam, A6

Four points are chosen uniformly and independently at random in the interior of a given circle. Find the probability that they are the vertices of a convex quadrilateral.

1988 Flanders Math Olympiad, 4

Be $R$ a positive real number. If $R, 1, R+\frac12$ are triangle sides, call $\theta$ the angle between $R$ and $R+\frac12$ (in rad). Prove $2R\theta$ is between $1$ and $\pi$.

2010 Today's Calculation Of Integral, 589

Evaluate $ \int_0^1 \frac{x}{\{(2x\minus{}1)\sqrt{x^2\plus{}x\plus{}1}\plus{}(2x\plus{}1)\sqrt{x^2\minus{}x\plus{}1}\}\sqrt{x^4\plus{}x^2\plus{}1}}\ dx$.

2010 Today's Calculation Of Integral, 622

For $0<k<2$, consider two curves $C_1: y=\sin 2x\ (0\leq x\leq \pi),\ C_2: y=k\cos x\ (0\leqq x\leqq \pi).$ Denote by $S(k)$ the sum of the areas of four parts enclosed by $C_1,\ C_2$ and two lines $x=0,\ x=\pi$. Find the minimum value of $S(k).$ [i]2010 Nagoya Institute of Technology entrance exam[/i]

2011 Today's Calculation Of Integral, 725

For $a>1$, evaluate $\int_{\frac{1}{a}}^a \frac{1}{x}(\ln x)\ln\ (x^2+1)dx.$

2009 Today's Calculation Of Integral, 421

Let $ f(x) \equal{} e^{(p \plus{} 1)x} \minus{} e^x$ for real number $ p > 0$. Answer the following questions. (1) Find the value of $ x \equal{} s_p$ for which $ f(x)$ is minimal and draw the graph of $ y \equal{} f(x)$. (2) Let $ g(t) \equal{} \int_t^{t \plus{} 1} f(x)e^{t \minus{} x}\ dx$. Find the value of $ t \equal{} t_p$ for which $ g(t)$ is minimal. (3) Use the fact $ 1 \plus{} \frac {p}{2}\leq \frac {e^p \minus{} 1}{p}\leq 1 \plus{} \frac {p}{2} \plus{} p^2\ (0 < p\leq 1)$ to find the limit $ \lim_{p\rightarrow \plus{}0} (t_p \minus{} s_p)$.

2009 Today's Calculation Of Integral, 404

Evaluate $ \int_{ \minus{} \pi}^{\pi} \frac {\sin nx}{(1 \plus{} 2009^x)\sin x}\ dx\ (n\equal{}0,\ 1,\ 2,\ \cdots)$.

2023 ISI Entrance UGB, 2

Let $a_0 = \frac{1}{2}$ and $a_n$ be defined inductively by \[a_n = \sqrt{\frac{1+a_{n-1}}{2}} \text{, $n \ge 1$.} \] [list=a] [*] Show that for $n = 0,1,2, \ldots,$ \[a_n = \cos(\theta_n) \text{ for some $0 < \theta_n < \frac{\pi}{2}$, }\] and determine $\theta_n$. [*] Using (a) or otherwise, calculate \[ \lim_{n \to \infty} 4^n (1 - a_n).\] [/list]

1982 Putnam, B2

Let $A(x,y)$ be the number of points $(m,n)$ in the plane with integer coordinates $m$ and $n$ satisfying $m^2+n^2\le x^2+y^2$. Let $g=\sum_{k=1}^\infty e^{-k^2}$. Express $$\int^\infty_{-\infty}\int^\infty_{-\infty}A(x,y)e^{-x^2-y^2}dxdy$$ as a polynomial in $g$.

1984 Vietnam National Olympiad, 1

$(a)$ Find a polynomial with integer coefficients of the smallest degree having $\sqrt{2} + \sqrt[3]{3}$ as a root. $(b)$ Solve $1 +\sqrt{1 + x^2}(\sqrt{(1 + x)^3}-\sqrt{(1- x)^3}) = 2\sqrt{1 - x^2}$.