Found problems: 2215
1999 Finnish National High School Mathematics Competition, 1
Show that the equation $x^3 + 2y^2 + 4z = n$ has an integral solution $(x, y, z)$ for all integers $n.$
2013 AMC 12/AHSME, 21
Consider \[A = \log (2013 + \log (2012 + \log (2011 + \log (\cdots + \log (3 + \log 2) \cdots )))).\] Which of the following intervals contains $ A $?
$ \textbf{(A)} \ (\log 2016, \log 2017) $
$ \textbf{(B)} \ (\log 2017, \log 2018) $
$ \textbf{(C)} \ (\log 2018, \log 2019) $
$ \textbf{(D)} \ (\log 2019, \log 2020) $
$ \textbf{(E)} \ (\log 2020, \log 2021) $
2018 Romania National Olympiad, 3
Let $f:[a,b] \to \mathbb{R}$ be an integrable function and $(a_n) \subset \mathbb{R}$ such that $a_n \to 0.$
$\textbf{a) }$ If $A= \{m \cdot a_n \mid m,n \in \mathbb{N}^* \},$ prove that every open interval of strictly positive real numbers contains elements from $A.$
$\textbf{b) }$ If, for any $n \in \mathbb{N}^*$ and for any $x,y \in [a,b]$ with $|x-y|=a_n,$ the inequality $\left| \int_x^yf(t)dt \right| \leq |x-y|$ is true, prove that $$\left| \int_x^y f(t)dt \right| \leq |x-y|, \: \forall x,y \in [a,b]$$
[i]Nicolae Bourbacut[/i]
1977 Vietnam National Olympiad, 4
$p(x) $ is a real polynomial of degree $3$.
Find necessary and sufficient conditions on its coefficients in order that $p(n)$ is integral for every integer $n$.
2008 Harvard-MIT Mathematics Tournament, 1
Let $ f(x) \equal{} 1 \plus{} x \plus{} x^2 \plus{} \cdots \plus{} x^{100}$. Find $ f'(1)$.
2019 Jozsef Wildt International Math Competition, W. 57
Let be $x_1=\frac{1}{\sqrt[n+1]{n!}}$ and $x_2=\frac{1}{\sqrt[n+1]{(n-1)!}}$ for all $n\in \mathbb{N}^*$ and $f:\left(\left .\frac{1}{\sqrt[n+1]{(n+1)!}},1\right.\right] \to \mathbb{R}$ where $$f(x)=\frac{n+1}{x\ln (n+1)!+(n+1)\ln \left(x^x\right)}$$Prove that the sequence $(a_n)_{n\geq1}$ when $a_n=\int \limits_{x_1}^{x_2}f(x)dx$ is convergent and compute $$\lim \limits_{n \to \infty}a_n$$
2010 Today's Calculation Of Integral, 597
In space given a board shaped the equilateral triangle $PQR$ with vertices $P\left(1,\ \frac 12,\ 0\right),\ Q\left(1,-\frac 12,\ 0\right),\ R\left(\frac 14,\ 0,\ \frac{\sqrt{3}}{4}\right)$. When $S$ is revolved about the $z$-axis, find the volume of the solid generated by the whole points through which $S$ passes.
1984 Tokyo University entrance exam/Science
Today's calculation of integrals, 871
Define sequences $\{a_n\},\ \{b_n\}$ by
\[a_n=\int_{-\frac {\pi}6}^{\frac{\pi}6} e^{n\sin \theta}d\theta,\ b_n=\int_{-\frac {\pi}6}^{\frac{\pi}6} e^{n\sin \theta}\cos \theta d\theta\ (n=1,\ 2,\ 3,\ \cdots).\]
(1) Find $b_n$.
(2) Prove that for each $n$, $b_n\leq a_n\leq \frac 2{\sqrt{3}}b_n.$
(3) Find $\lim_{n\to\infty} \frac 1{n}\ln (na_n).$
2009 Today's Calculation Of Integral, 499
Evaluate
\[ \int_0^{\pi} (\sqrt[2009]{\cos x}\plus{}\sqrt[2009]{\sin x}\plus{}\sqrt[2009]{\tan x})\ dx.\]
2009 Today's Calculation Of Integral, 520
Let $ a,\ b,\ c$ be postive constants.
Evaluate $ \int_0^1 \frac{2a\plus{}3bx\plus{}4cx^2}{2\sqrt{a\plus{}bx\plus{}cx^2}}\ dx$.
2008 Harvard-MIT Mathematics Tournament, 2
([b]3[/b]) Let $ \ell$ be the line through $ (0,0)$ and tangent to the curve $ y \equal{} x^3 \plus{} x \plus{} 16$. Find the slope of $ \ell$.
2009 Today's Calculation Of Integral, 487
Suppose two functions $ f(x)\equal{}x^4\minus{}x,\ g(x)\equal{}ax^3\plus{}bx^2\plus{}cx\plus{}d$ satisfy $ f(1)\equal{}g(1),\ f(\minus{}1)\equal{}g(\minus{}1)$.
Find the values of $ a,\ b,\ c,\ d$ such that $ \int_{\minus{}1}^1 (f(x)\minus{}g(x))^2dx$ is minimal.
2006 Germany Team Selection Test, 2
Four real numbers $ p$, $ q$, $ r$, $ s$ satisfy $ p+q+r+s = 9$ and $ p^{2}+q^{2}+r^{2}+s^{2}= 21$. Prove that there exists a permutation $ \left(a,b,c,d\right)$ of $ \left(p,q,r,s\right)$ such that $ ab-cd \geq 2$.
1997 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 10
The minimal value of $ f(x) \equal{} \sqrt{a^2 \plus{} x^2} \plus{} \sqrt{(x\minus{}b)^2 \plus{} c^2}$ is
A. $ a\plus{}b\plus{}c$
B. $ \sqrt{a^2 \plus{} (b \plus{} c)^2}$
C. $ \sqrt{b^2 \plus{} (a\plus{}c)^2}$
D. $ \sqrt{(a\plus{}b)^2 \plus{} c^2}$
E. None of these
2020 SEEMOUS, Problem 2
Let $k>1$ be a real number. Calculate:
(a) $L=\lim_{n\to \infty} \int_0^1\left( \frac{k}{\sqrt[n]{x}+k-1}\right)^n\text{d} x.$
(b) $\lim_{n\to \infty} n\left\lbrack L- \int_0^1\left( \frac{k}{\sqrt[n]{x}+k-1}\right)^n\text{d} x\right\rbrack.$
2007 Today's Calculation Of Integral, 226
Evaluate $ \int_0^{\frac {\pi}{2}} \frac {x^2}{(\cos x \plus{} x\sin x)^2}\ dx$
[color=darkblue]Virgil Nicula have already posted the integral[/color] :oops:
2010 Today's Calculation Of Integral, 549
Let $ f(x)$ be a function defined on $ [0,\ 1]$. For $ n=1,\ 2,\ 3,\ \cdots$, a polynomial $ P_n(x)$ is defined by $ P_n(x)=\sum_{k=0}^n {}_nC{}_k f\left(\frac{k}{n}\right)x^k(1-x)^{n-k}$. Prove that $ \lim_{n\to\infty} \int_0^1 P_n(x)dx=\int_0^1 f(x)dx$.
2013 Stanford Mathematics Tournament, 10
Evaluate $\lim_{n\to\infty}\left[\left(\prod_{k=1}^{n}\frac{2k}{2k-1}\right)\int_{-1}^{\infty}\frac{(\cos x)^{2n}}{2^x} \, dx\right]$.
2008 China Team Selection Test, 2
In a plane, there is an infinite triangular grid consists of equilateral triangles whose lengths of the sides are equal to $ 1$, call the vertices of the triangles the lattice points, call two lattice points are adjacent if the distance between the two points is equal to $ 1;$
A jump game is played by two frogs $ A,B,$ "A jump" is called if the frogs jump from the point which it is lying on to its adjacent point, " A round jump of $ A,B$" is called if first $ A$ jumps and then $ B$ by the following rules:
Rule (1): $ A$ jumps once arbitrarily, then $ B$ jumps once in the same direction, or twice in the opposite direction;
Rule (2): when $ A,B$ sits on adjacent lattice points, they carry out Rule (1) finishing a round jump, or $ A$ jumps twice continually, keep adjacent with $ B$ every time, and $ B$ rests on previous position;
If the original positions of $ A,B$ are adjacent lattice points, determine whether for $ A$ and $ B$,such that the one can exactly land on the original position of the other after a finite round jumps.
2005 China Western Mathematical Olympiad, 6
In isosceles right-angled triangle $ABC$, $CA = CB = 1$. $P$ is an arbitrary point on the sides of $ABC$. Find the maximum of $PA \cdot PB \cdot PC$.
2007 Today's Calculation Of Integral, 182
Find the area of the domain of the system of inequality
\[y(y-|x^{2}-5|+4)\leq 0,\ \ y+x^{2}-2x-3\leq 0. \]
1956 AMC 12/AHSME, 23
About the equation $ ax^2 \minus{} 2x\sqrt {2} \plus{} c \equal{} 0$, with $ a$ and $ c$ real constants, we are told that the discriminant is zero. The roots are necessarily:
$ \textbf{(A)}\ \text{equal and integral} \qquad\textbf{(B)}\ \text{equal and rational} \qquad\textbf{(C)}\ \text{equal and real}$
$ \textbf{(D)}\ \text{equal and irrational} \qquad\textbf{(E)}\ \text{equal and imaginary}$
2009 IMS, 5
Suppose that $ f: \mathbb R^2\rightarrow \mathbb R$ is a non-negative and continuous function that $ \iint_{\mathbb R^2}f(x,y)dxdy\equal{}1$. Prove that there is a closed disc $ D$ with the least radius possible such that $ \iint_D f(x,y)dxdy\equal{}\frac12$.
2019 LIMIT Category B, Problem 6
Let $f(x)=a_0+a_1|x|+a_2|x|^2+a_3|x|^3$, where $a_0,a_1,a_2,a_3$ are constant. Then
$\textbf{(A)}~f(x)\text{ is differentiable at }x=0\text{ if whatever be }a_0,a_1,a_2,a_3$
$\textbf{(B)}~f(x)\text{ is not differentiable at }x=0\text{ if whatever be }a_0,a_1,a_2,a_3$
$\textbf{(C)}~f(x)\text{ is differentiable at }x=0\text{ only if }a_1=0$
$\textbf{(D)}~f(x)\text{ is differentiable at }x=0\text{ only if }a_1=0,a_3=0$
2011 Putnam, A3
Find a real number $c$ and a positive number $L$ for which
\[\lim_{r\to\infty}\frac{r^c\int_0^{\pi/2}x^r\sin x\,dx}{\int_0^{\pi/2}x^r\cos x\,dx}=L.\]