Found problems: 2215
2016 Romania National Olympiad, 1
Let be a natural number $ n\ge 2 $ and $ n $ positive real numbers $ a_1,a_2,\ldots ,a_n $ whose product is $ 1. $
Prove that the function $ f:\mathbb{R}_{>0}\longrightarrow\mathbb{R} ,\quad f(x)=\prod_{i=1}^n \left( 1+a_i^x \right) , $ is nondecreasing.
2000 National High School Mathematics League, 5
The shortest distance from an integral point to line $y=\frac{5}{3}x+\frac{4}{5}$ is
$\text{(A)}\frac{\sqrt{34}}{170}\qquad\text{(B)}\frac{\sqrt{34}}{85}\qquad\text{(C)}\frac{1}{20}\qquad\text{(D)}\frac{1}{30}$
2025 VJIMC, 3
Evaluate the integral $\int_0^{\infty} \frac{\log(x+2)}{x^2+3x+2}\mathrm{d}x$.
2009 Harvard-MIT Mathematics Tournament, 9
Let $\mathcal{R}$ be the region in the plane bounded by the graphs of $y=x$ and $y=x^2$. Compute the volume of the region formed by revolving $\mathcal{R}$ around the line $y=x$.
2012 Romania National Olympiad, 4
[color=darkred]Find all differentiable functions $f\colon [0,\infty)\to [0,\infty)$ for which $f(0)=0$ and $f^{\prime}(x^2)=f(x)$ for any $x\in [0,\infty)$ .[/color]
2008 AIME Problems, 14
Let $ a$ and $ b$ be positive real numbers with $ a\ge b$. Let $ \rho$ be the maximum possible value of $ \frac{a}{b}$ for which the system of equations
\[ a^2\plus{}y^2\equal{}b^2\plus{}x^2\equal{}(a\minus{}x)^2\plus{}(b\minus{}y)^2\]has a solution in $ (x,y)$ satisfying $ 0\le x<a$ and $ 0\le y<b$. Then $ \rho^2$ can be expressed as a fraction $ \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m\plus{}n$.
1998 Harvard-MIT Mathematics Tournament, 9
Evaluate $\displaystyle\sum_{n=1}^\infty \dfrac{1}{n\cdot 2^{n-1}}$.
2009 Today's Calculation Of Integral, 516
Let $ f(x)\equal{}\frac{1}{\sin x\sqrt{1\minus{}\cos x}}\ (0<x<\pi)$.
(1) Find the local minimum value of $ f(x)$.
(2) Evaluate $ \int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} f(x)\ dx$.
2013 Stanford Mathematics Tournament, 4
Evaluate $\int_{0}^{4}e^{\sqrt{x}} \, dx$.
1966 Miklós Schweitzer, 4
Let $ I$ be an ideal of the ring $\mathbb{Z}\left[x\right]$ of all polynomials with integer coefficients such that
a) the elements of $ I$ do not have a common divisor of degree greater than $ 0$, and
b) $ I$ contains of a polynomial with constant term $ 1$.
Prove that $ I$ contains the polynomial $ 1 + x + x^2 + ... + x^{r-1}$ for some natural number $ r$.
[i]Gy. Szekeres[/i]
PEN K Problems, 26
The function $f: \mathbb{N}\to\mathbb{N}_{0}$ satisfies for all $m,n\in\mathbb{N}$: \[f(m+n)-f(m)-f(n)=0\text{ or }1, \; f(2)=0, \; f(3)>0, \; \text{ and }f(9999)=3333.\] Determine $f(1982)$.
2010 Today's Calculation Of Integral, 591
Let $ a,\ b,\ c$ be real numbers such that $ a\geq b\geq c\geq 1$.
Prove the following inequality:
\[ \int_0^1 \{(1\minus{}ax)^3\plus{}(1\minus{}bx)^3\plus{}(1\minus{}cx)^3\minus{}3x\}\ dx\geq ab\plus{}bc\plus{}ca\minus{}\frac 32(a\plus{}b\plus{}c)\minus{}\frac 34abc.\]
1975 IMO Shortlist, 3
Find the integer represented by $\left[ \sum_{n=1}^{10^9} n^{-2/3} \right] $. Here $[x]$ denotes the greatest integer less than or equal to $x.$
2007 Today's Calculation Of Integral, 236
Let $a$ be a positive constant. Evaluate the following definite integrals $A,\ B$.
\[A=\int_0^{\pi} e^{-ax}\sin ^ 2 x\ dx,\ B=\int_0^{\pi} e^{-ax}\cos ^ 2 x\ dx\].
[i]1998 Shinsyu University entrance exam/Textile Science[/i]
1985 IMO Longlists, 88
Determine the range of $w(w + x)(w + y)(w + z)$, where $x, y, z$, and $w$ are real numbers such that
\[x + y + z + w = x^7 + y^7 + z^7 + w^7 = 0.\]
2008 AMC 12/AHSME, 21
Two circles of radius 1 are to be constructed as follows. The center of circle $ A$ is chosen uniformly and at random from the line segment joining $ (0,0)$ and $ (2,0)$. The center of circle $ B$ is chosen uniformly and at random, and independently of the first choice, from the line segment joining $ (0,1)$ to $ (2,1)$. What is the probability that circles $ A$ and $ B$ intersect?
$ \textbf{(A)} \; \frac{2\plus{}\sqrt{2}}{4} \qquad \textbf{(B)} \; \frac{3\sqrt{3}\plus{}2}{8} \qquad \textbf{(C)} \; \frac{2 \sqrt{2} \minus{} 1}{2} \qquad \textbf{(D)} \; \frac{2\plus{}\sqrt{3}}{4} \qquad \textbf{(E)} \; \frac{4 \sqrt{3} \minus{} 3}{4}$
1958 February Putnam, A5
Show that the integral equation
$$f(x,y) = 1 + \int_{0}^{x} \int_{0}^{y} f(u,v) \, du \, dv$$
has at most one solution continuous for $0\leq x \leq 1, 0\leq y \leq 1.$
2009 USA Team Selection Test, 8
Fix a prime number $ p > 5$. Let $ a,b,c$ be integers no two of which have their difference divisible by $ p$. Let $ i,j,k$ be nonnegative integers such that $ i \plus{} j \plus{} k$ is divisible by $ p \minus{} 1$. Suppose that for all integers $ x$, the quantity
\[ (x \minus{} a)(x \minus{} b)(x \minus{} c)[(x \minus{} a)^i(x \minus{} b)^j(x \minus{} c)^k \minus{} 1]\]
is divisible by $ p$. Prove that each of $ i,j,k$ must be divisible by $ p \minus{} 1$.
[i]Kiran Kedlaya and Peter Shor.[/i]
2022 CMIMC Integration Bee, 7
\[\int_{-1}^1 \sqrt{\frac{1+x}{1-x}}+\sqrt{\frac{1-x}{1+x}}\,\mathrm dx\]
[i]Proposed by Vlad Oleksenko[/i]
1986 IMO Shortlist, 7
Let real numbers $x_1, x_2, \cdots , x_n$ satisfy $0 < x_1 < x_2 < \cdots< x_n < 1$ and set $x_0 = 0, x_{n+1} = 1$. Suppose that these numbers satisfy the following system of equations:
\[\sum_{j=0, j \neq i}^{n+1} \frac{1}{x_i-x_j}=0 \quad \text{where } i = 1, 2, . . ., n.\]
Prove that $x_{n+1-i} = 1- x_i$ for $i = 1, 2, . . . , n.$
2011 Today's Calculation Of Integral, 734
Find the extremum of $f(t)=\int_1^t \frac{\ln x}{x+t}dx\ (t>0)$.
2014 Dutch IMO TST, 5
Let $P(x)$ be a polynomial of degree $n \le 10$ with integral coefficients such that for every $k \in \{1, 2, \dots, 10\}$ there is an integer $m$ with $P(m) = k$. Furthermore, it is given that $|P(10) - P(0)| < 1000$. Prove that for every integer $k$ there is an integer $m$ such that $P(m) = k.$
1999 USAMTS Problems, 4
We will say that an octagon is integral if its is equiangular, its vertices are lattice points (i.e., points with integer coordinates), and its area is an integer. For example, the figure on the right shows an integral octagon of area $21$. Determine, with proof, the smallest positive integer $K$ so that for every positive integer $k\geq K$, there is an integral octagon of area $k$.
[asy]
size(200);
defaultpen(linewidth(0.8));
draw((-1/2,0)--(17/2,0)^^(0,-1/2)--(0,15/2));
for(int i=1;i<=6;++i){
draw((0,i)--(17/2,i),linetype("4 4"));
}
for(int i=1;i<=8;++i){
draw((i,0)--(i,15/2),linetype("4 4"));
}
draw((2,1)--(1,2)--(1,3)--(4,6)--(5,6)--(7,4)--(7,3)--(5,1)--cycle,linewidth(1));
label("$1$",(1,0),S);
label("$2$",(2,0),S);
label("$x$",(17/2,0),SE);
label("$1$",(0,1),W);
label("$2$",(0,2),W);
label("$y$",(0,15/2),NW);
[/asy]
PEN R Problems, 7
Show that the number $r(n)$ of representations of $n$ as a sum of two squares has $\pi$ as arithmetic mean, that is \[\lim_{n \to \infty}\frac{1}{n}\sum^{n}_{m=1}r(m) = \pi.\]
Today's calculation of integrals, 848
Evaluate $\int_0^{\frac {\pi}{4}} \frac {\sin \theta -2\ln \frac{1-\sin \theta}{\cos \theta}}{(1+\cos 2\theta)\sqrt{\ln \frac{1+\sin \theta}{\cos \theta}}}d\theta .$