This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

1999 Putnam, 5

Prove that there is a constant $C$ such that, if $p(x)$ is a polynomial of degree $1999$, then \[|p(0)|\leq C\int_{-1}^1|p(x)|\,dx.\]

2002 Flanders Math Olympiad, 3

show that $\frac1{15} < \frac12\cdot\frac34\cdots\frac{99}{100} < \frac1{10}$

2013 Today's Calculation Of Integral, 882

Find $\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n+k}(\ln (n+k)-\ln\ n)$.

2013 Princeton University Math Competition, 3

The area of a circle centered at the origin, which is inscribed in the parabola $y=x^2-25$, can be expressed as $\tfrac ab\pi$, where $a$ and $b$ are coprime positive integers. What is the value of $a+b$?

2004 Nicolae Coculescu, 1

Calculate $ \lim_{n\to\infty } \left( e^{1+1/2+1/3+\cdots +1/n+1/(n+1)} -e^{1+1/2+1/3+\cdots +1/n} \right) . $

2007 Today's Calculation Of Integral, 222

Find $ \lim_{a\rightarrow\infty}\int_{a}^{a\plus{}1}\frac{x}{x\plus{}\ln x}\ dx$.

2010 Today's Calculation Of Integral, 593

For a positive integer $m$, prove the following ineqaulity. $0\leq \int_0^1 \left(x+1-\sqrt{x^2+2x\cos \frac{2\pi}{2m+1}+1\right)dx\leq 1.}$ 1996 Osaka University entrance exam

2011 Harvard-MIT Mathematics Tournament, 3

Find all integers $x$ such that $2x^2+x-6$ is a positive integral power of a prime positive integer.

2002 AIME Problems, 10

While finding the sine of a certain angle, an absent-minded professor failed to notice that his calculator was not in the correct angular mode. He was lucky to get the right answer. The two least positive real values of $x$ for which the sine of $x$ degrees is the same as the sine of $x$ radians are $\frac{m\pi}{n-\pi}$ and $\frac{p\pi}{q+\pi},$ where $m,$ $n,$ $p$ and $q$ are positive integers. Find $m+n+p+q.$

2005 Today's Calculation Of Integral, 48

Evaluate \[\lim_{n\to\infty} \left(\int_0^{\pi} \frac{\sin ^ 2 nx}{\sin x}dx-\sum_{k=1}^n \frac{1}{k}\right)\]

2007 Today's Calculation Of Integral, 221

Evaluate $ \int_{2}^{6}\ln\frac{\minus{}1\plus{}\sqrt{1\plus{}4x}}{2}\ dx$.

2009 Today's Calculation Of Integral, 472

Given a line segment $ PQ$ moving on the parabola $ y \equal{} x^2$ with end points on the parabola. The area of the figure surrounded by $ PQ$ and the parabola is always equal to $ \frac {4}{3}$. Find the equation of the locus of the mid point $ M$ of $ PQ$.

2010 Harvard-MIT Mathematics Tournament, 7

Let $a_1$, $a_2$, and $a_3$ be nonzero complex numbers with non-negative real and imaginary parts. Find the minimum possible value of \[\dfrac{|a_1+a_2+a_3|}{\sqrt[3]{|a_1a_2a_3|}}.\]

1969 AMC 12/AHSME, 19

The number of distinct ordered pairs $(x,y)$, where $x$ and $y$ have positive integral values satisfying the equation $x^4y^4-10x^2y^2+9=0$, is: $\textbf{(A) }0\qquad \textbf{(B) }3\qquad \textbf{(C) }4\qquad \textbf{(D) }12\qquad \textbf{(E) }\text{infinite}$

1950 Miklós Schweitzer, 9

Find the sum of the series $ x\plus{}\frac{x^3}{1\cdot 3}\plus{}\frac{x^5}{1\cdot 3\cdot 5}\plus{}\cdots\plus{}\frac{x^{2n\plus{}1}}{1\cdot 3\cdot 5\cdot \cdots \cdot (2n\plus{}1)}\plus{}\cdots$

Estonia Open Junior - geometry, 2007.1.4

Call a scalene triangle K [i]disguisable[/i] if there exists a triangle K′ similar to K with two shorter sides precisely as long as the two longer sides of K, respectively. Call a disguisable triangle [i]integral[/i] if the lengths of all its sides are integers. (a) Find the side lengths of the integral disguisable triangle with the smallest possible perimeter. (b) Let K be an arbitrary integral disguisable triangle for which no smaller integral disguisable triangle similar to it exists. Prove that at least two side lengths of K are perfect squares.

1998 National Olympiad First Round, 14

Find the number of distinct integral solutions of $ x^{4} \plus{}2x^{3} \plus{}3x^{2} \minus{}x\plus{}1\equiv 0\, \, \left(mod\, 30\right)$ where $ 0\le x<30$. $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 4$

2001 IMO Shortlist, 2

Consider the system \begin{align*}x + y &= z + u,\\2xy & = zu.\end{align*} Find the greatest value of the real constant $m$ such that $m \leq x/y$ for any positive integer solution $(x,y,z,u)$ of the system, with $x \geq y$.

2015 Belarus Team Selection Test, 2

Define the function $f:(0,1)\to (0,1)$ by \[\displaystyle f(x) = \left\{ \begin{array}{lr} x+\frac 12 & \text{if}\ \ x < \frac 12\\ x^2 & \text{if}\ \ x \ge \frac 12 \end{array} \right.\] Let $a$ and $b$ be two real numbers such that $0 < a < b < 1$. We define the sequences $a_n$ and $b_n$ by $a_0 = a, b_0 = b$, and $a_n = f( a_{n -1})$, $b_n = f (b_{n -1} )$ for $n > 0$. Show that there exists a positive integer $n$ such that \[(a_n - a_{n-1})(b_n-b_{n-1})<0.\] [i]Proposed by Denmark[/i]

2021 Simon Marais Mathematical Competition, A4

For each positive real number $r$, define $a_0(r) = 1$ and $a_{n+1}(r) = \lfloor ra_n(r) \rfloor$ for all integers $n \ge 0$. (a) Prove that for each positive real number $r$, the limit \[ L(r) = \lim_{n \to \infty} \frac{a_n(r)}{r^n} \] exists. (b) Determine all possible values of $L(r)$ as $r$ varies over the set of positive real numbers. [i]Here $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$.[/i]

2007 Today's Calculation Of Integral, 230

Prove that $ \frac {( \minus{} 1)^n}{n!}\int_1^2 (\ln x)^n\ dx \equal{} 2\sum_{k \equal{} 1}^n \frac {( \minus{} \ln 2)^k}{k!} \plus{} 1$.

2009 Today's Calculation Of Integral, 424

Let $ n$ be positive integer. For $ n \equal{} 1,\ 2,\ 3,\ \cdots n$, let denote $ S_k$ be the area of $ \triangle{AOB_k}$ such that $ \angle{AOB_k} \equal{} \frac {k}{2n}\pi ,\ OA \equal{} 1,\ OB_k \equal{} k$. Find the limit $ \lim_{n\to\infty}\frac {1}{n^2}\sum_{k \equal{} 1}^n S_k$.

1989 IMO Longlists, 73

We are given a finite collection of segments in the plane, of total length 1. Prove that there exists a line $ l$ such that the sum of the lengths of the projections of the given segments to the line $ l$ is less than $ \frac{2}{\pi}.$

2005 Today's Calculation Of Integral, 65

Let $a>0$. Find the minimum value of $\int_{-1}^a \left(1-\frac{x}{a}\right)\sqrt{1+x}\ dx$

2021 Simon Marais Mathematical Competition, B4

[i]The following problem is open in the sense that the answer to part (b) is not currently known. A proof of part (a) will be awarded 5 points. Up to 7 additional points may be awarded for progress on part (b).[/i] Let $p(x)$ be a polynomial of degree $d$ with coefficients belonging to the set of rational numbers $\mathbb{Q}$. Suppose that, for each $1 \le k \le d-1$, $p(x)$ and its $k$th derivative $p^{(k)}(x)$ have a common root in $\mathbb{Q}$; that is, there exists $r_k \in \mathbb{Q}$ such that $p(r_k) = p^{(k)}(r_k) = 0$. (a) Prove that if $d$ is prime then there exist constants $a, b, c \in \mathbb{Q}$ such that \[ p(x) = c(ax + b)^d. \] (b) For which integers $d \ge 2$ does the conclusion of part (a) hold?