This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2012 Today's Calculation Of Integral, 827

Find $\lim_{n\to\infty}\sum_{k=0}^{\infty} \int_{2k\pi}^{(2k+1)\pi} xe^{-x}\sin x\ dx.$

2005 ISI B.Stat Entrance Exam, 2

Let \[f(x)=\int_0^1 |t-x|t \, dt\] for all real $x$. Sketch the graph of $f(x)$. What is the minimum value of $f(x)$?

1982 AMC 12/AHSME, 29

Let $ x$,$ y$, and $ z$ be three positive real numbers whose sum is $ 1$. If no one of these numbers is more than twice any other, then the minimum possible value of the product $ xyz$ is $ \textbf{(A)}\ \frac{1}{32}\qquad \textbf{(B)}\ \frac{1}{36}\qquad \textbf{(C)}\ \frac{4}{125}\qquad \textbf{(D)}\ \frac{1}{127}\qquad \textbf{(E)}\ \text{none of these}$

2005 Today's Calculation Of Integral, 67

Evaluate \[\frac{2005\displaystyle \int_0^{1002}\frac{dx}{\sqrt{1002^2-x^2}+\sqrt{1003^2-x^2}}+\int_{1002}^{1003}\sqrt{1003^2-x^2}dx}{\displaystyle \int_0^1\sqrt{1-x^2}dx}\]

2018 Bangladesh Mathematical Olympiad, 7

[b]Evaluate[/b] $\int^{\pi/2}_0 \frac{\cos^4x + \sin x \cos^3 x + \sin^2x\cos^2x + \sin^3x\cos x}{\sin^4x + \cos^4x + 2\ sinx\cos^3x + 2\sin^2x\cos^2x + 2\sin^3x\cos x} dx$

2007 Today's Calculation Of Integral, 170

Let $a,\ b$ be constant numbers such that $a^{2}\geq b.$ Find the following definite integrals. (1) $I=\int \frac{dx}{x^{2}+2ax+b}$ (2) $J=\int \frac{dx}{(x^{2}+2ax+b)^{2}}$

2012 Today's Calculation Of Integral, 786

For each positive integer $n$, define $H_n(x)=(-1)^ne^{x^2}\frac{d^n}{dx^n}e^{-x^2}.$ (1) Find $H_1(x),\ H_2(x),\ H_3(x)$. (2) Express $\frac{d}{dx}H_n(x)$ interms of $H_n(x),\ H_{n+1}(x).$ Then prove that $H_n(x)$ is a polynpmial with degree $n$ by induction. (3) Let $a$ be real number. For $n\geq 3$, express $S_n(a)=\int_0^a xH_n(x)e^{-x^2}dx$ in terms of $H_{n-1}(a),\ H_{n-2}(a),\ H_{n-2}(0)$. (4) Find $\lim_{a\to\infty} S_6(a)$. If necessary, you may use $\lim_{x\to\infty}x^ke^{-x^2}=0$ for a positive integer $k$.

2007 Junior Balkan Team Selection Tests - Romania, 2

Let $x, y, z \ge 0$ be real numbers. Prove that: \[\frac{x^{3}+y^{3}+z^{3}}{3}\ge xyz+\frac{3}{4}|(x-y)(y-z)(z-x)| .\] [hide="Additional task"]Find the maximal real constant $\alpha$ that can replace $\frac{3}{4}$ such that the inequality is still true for any non-negative $x,y,z$.[/hide]

2005 Today's Calculation Of Integral, 53

Find the maximum value of the following integral. \[\int_0^{\infty} e^{-x}\sin tx\ dx\]

2019 Simon Marais Mathematical Competition, A4

Suppose $x_1,x_2,x_3,\dotsc$ is a strictly decreasing sequence of positive real numbers such that the series $x_1+x_2+x_3+\cdots$ diverges. Is it necessary true that the series $\sum_{n=2}^{\infty}{\min \left\{ x_n,\frac{1}{n\log (n)}\right\} }$ diverges?

2007 Today's Calculation Of Integral, 218

For any quadratic functions $ f(x)$ such that $ f'(2)\equal{}1$, evaluate $ \int_{2\minus{}\pi}^{2\plus{}\pi}f(x)\sin\left(\frac{x}{2}\minus{}1\right) dx$.

2010 Today's Calculation Of Integral, 604

Let $r$ be a positive integer. Determine the value of $a$ for which the limit value $\lim_{n\to\infty} \frac{\sum_{k=1}^n k^r}{n^a} $ has a non zero finite value, then find the limit value. 1956 Tokyo Institute of Technology entrance exam

2007 ITest, 31

Let $x$ be the length of one side of a triangle and let $y$ be the height to that side. If $x+y=418$, find the maximum possible $\textit{integral value}$ of the area of the triangle.

2004 Harvard-MIT Mathematics Tournament, 10

Let $P(x)=x^3-\tfrac{3}{2}x^2+x+\tfrac{1}{4}$. Let $P^{[1]}(x)=P(x)$, and for $n\ge1$, let $P^{n+1}(x)=P^{[n]}(P(x))$. Evaluate: \[ \displaystyle\int_{0}^{1} P^{[2004]} (x) \ \mathrm{d}x. \]

1996 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 5

Let $ f$ be a function from the non-negative integers to the non-negative integers such that $ f(nm) \equal{} n f(m) \plus{} m f(n), f(10) \equal{} 19, f(12) \equal{} 52,$ and $ f(15) \equal{} 26.$ What is $ f(8)$? A. 12 B. 24 C. 36 D. 48 E. 60

MathLinks Contest 7th, 5.3

If $ a\geq b\geq c\geq d > 0$ such that $ abcd\equal{}1$, then prove that \[ \frac 1{1\plus{}a} \plus{} \frac 1{1\plus{}b} \plus{} \frac 1{1\plus{}c} \geq \frac {3}{1\plus{}\sqrt[3]{abc}}.\]

1999 National Olympiad First Round, 6

If $ a,b,c\in {\rm Z}$ and \[ \begin{array}{l} {x\equiv a\, \, \, \pmod{14}} \\ {x\equiv b\, \, \, \pmod {15}} \\ {x\equiv c\, \, \, \pmod {16}} \end{array} \] , the number of integral solutions of the congruence system on the interval $ 0\le x < 2000$ cannot be $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \text{None}$

2010 Harvard-MIT Mathematics Tournament, 3

Let $p$ be a monic cubic polynomial such that $p(0)=1$ and such that all the zeroes of $p^\prime (x)$ are also zeroes of $p(x)$. Find $p$. Note: monic means that the leading coefficient is $1$.

2012 Pre-Preparation Course Examination, 5

The $2^{nd}$ order differentiable function $f:\mathbb R \longrightarrow \mathbb R$ is in such a way that for every $x\in \mathbb R$ we have $f''(x)+f(x)=0$. [b]a)[/b] Prove that if in addition, $f(0)=f'(0)=0$, then $f\equiv 0$. [b]b)[/b] Use the previous part to show that there exist $a,b\in \mathbb R$ such that $f(x)=a\sin x+b\cos x$.

2010 Today's Calculation Of Integral, 634

Prove that : \[\int_1^{\sqrt{e}} (\ln x)^n dx=(-1)^{n-1}n!+\sqrt{e}\sum_{m=0}^{n} (-1)^{n-m}\frac{n!}{m!}\left(\frac 12\right)^m\ (n=1,\ 2,\ \cdots)\] [i]2010 Miyazaki University entrance exam/Medicine[/i]

2024 VJIMC, 1

Suppose that $f:[-1,1] \to \mathbb{R}$ is continuous and satisfies \[\left(\int_{-1}^1 e^xf(x) dx\right)^2 \ge \left(\int_{-1}^1 f(x) dx\right)\left(\int_{-1}^1 e^{2x}f(x) dx\right).\] Prove that there exists a point $c \in (-1,1)$ such that $f(c)=0$.

2008 District Round (Round II), 4

A semicircle has diameter $AB$ and center $S$,with a point $M$ on the circumference.$U,V$ are the incircles of sectors $ASM$ and $BSM$.Prove that circles $U,V$ can be seperated by a line perpendicular to $AB$.

1993 AMC 12/AHSME, 15

For how many values of $n$ will an $n$-sided regular polygon have interior angles with integral degree measures? $ \textbf{(A)}\ 16 \qquad\textbf{(B)}\ 18 \qquad\textbf{(C)}\ 20 \qquad\textbf{(D)}\ 22 \qquad\textbf{(E)}\ 24 $

2023 CMIMC Integration Bee, 4

\[\int_0^\infty x e^{-\sqrt[3]{x}}\,\mathrm dx\] [i]Proposed by Connor Gordon[/i]

2009 Today's Calculation Of Integral, 427

Let $ a$ be a positive real number, in Euclidean space, consider the two disks: $ D_1\equal{}\{(x,\ y,\ z)| x^2\plus{}y^2\leq 1,\ z\equal{}a\}$, $ D_2\equal{}\{(x,\ y,\ z)| x^2\plus{}y^2\leq 1,\ z\equal{}\minus{}a\}$. Let $ D_1$ overlap to $ D_2$ by rotating $ D_1$ about the $ y$ axis by $ 180^\circ$. Note that the rotational direction is supposed to be the direction such that we would lean the postive part of the $ z$ axis to into the direction of the postive part of $ x$ axis. Let denote $ E$ the part in which $ D_1$ passes while the rotation, let denote $ V(a)$ the volume of $ E$ and let $ W(a)$ be the volume of common part of $ E$ and $ \{(x,\ y,\ z)|x\geq 0\}$. (1) Find $ W(a)$. (2) Find $ \lim_{a\rightarrow \infty} V(a)$.