This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2010 Today's Calculation Of Integral, 526

For a function satisfying $ f'(x) > 0$ for $ a\leq x\leq b$, let $ F(x) \equal{} \int_a^b |f(t) \minus{} f(x)|\ dt$. For what value of $ x$ is $ F(x)$ is minimized?

1991 Arnold's Trivium, 60

Is there a solution of the Cauchy problem \[x(x^2+y^2)\frac{\partial u}{\partial x}+y^3\frac{\partial u}{\partial y}=0,\;u|_{y=0}=1\] in a neighbourhood of the point $(x_0,0)$ of the $x$-axis? Is it unique?

1998 Harvard-MIT Mathematics Tournament, 1

Farmer Tim is lost in the densely-forested Cartesian plane. Starting from the origin he walks a sinusoidal path in search of home; that is, after $t$ minutes he is at position $(t,\sin t)$. Five minutes after he sets out, Alex enters the forest at the origin and sets out in search of Tim. He walks in such a way that after he has been in the forest for $m$ minutes, his position is $(m,\cos t)$. What is the greatest distance between Alex and Farmer Tim while they are walking in these paths?

2013 Today's Calculation Of Integral, 899

Find the limit as below. \[\lim_{n\to\infty} \frac{(1^2+2^2+\cdots +n^2)(1^3+2^3+\cdots +n^3)(1^4+2^4+\cdots +n^4)}{(1^5+2^5+\cdots +n^5)^2}\]

2007 Harvard-MIT Mathematics Tournament, 3

Let $a$ be a positive real number. Find the value of $a$ such that the definite integral \[\int_a^{a^2} \dfrac{dx}{x+\sqrt{x}}\] achieves its smallest possible value.

2009 Today's Calculation Of Integral, 467

Let the curve $ C: y\equal{}x\sqrt{9\minus{}x^2}\ (x\geq 0)$. (1) Find the maximum value of $ y$. (2) Find the area of the figure bounded by the curve $ C$ and the $ x$ axis. (3) Find the volume of the solid generated by rotation of the figure about the $ y$ axis.

2007 Princeton University Math Competition, 9

Find the value of $x+y$ for which the expression \[\frac{6x^2}{y^6} + \frac{6y^2}{x^6}+9x^2y^2+\frac{4}{x^6y^6}\] is minimized.

2022 JHMT HS, 3

Let $x$ be a variable that can take any positive real value. For certain positive real constants $s$ and $t$, the value of $x^2 + \frac{s}{x}$ is minimized at $x = t$, and the value of $t^2\ln(2 + tx) + \frac{1}{x^2}$ is minimized at $x = s$. Compute the ordered pair $(s, t)$.

2011 Today's Calculation Of Integral, 728

Evaluate \[\int_{\frac {\pi}{12}}^{\frac{\pi}{6}} \frac{\sin x-\cos x-x(\sin x+\cos x)+1}{x^2-x(\sin x+\cos x)+\sin x\cos x}\ dx.\]

2004 Germany Team Selection Test, 1

Consider pairs of the sequences of positive real numbers \[a_1\geq a_2\geq a_3\geq\cdots,\qquad b_1\geq b_2\geq b_3\geq\cdots\] and the sums \[A_n = a_1 + \cdots + a_n,\quad B_n = b_1 + \cdots + b_n;\qquad n = 1,2,\ldots.\] For any pair define $c_n = \min\{a_i,b_i\}$ and $C_n = c_1 + \cdots + c_n$, $n=1,2,\ldots$. (1) Does there exist a pair $(a_i)_{i\geq 1}$, $(b_i)_{i\geq 1}$ such that the sequences $(A_n)_{n\geq 1}$ and $(B_n)_{n\geq 1}$ are unbounded while the sequence $(C_n)_{n\geq 1}$ is bounded? (2) Does the answer to question (1) change by assuming additionally that $b_i = 1/i$, $i=1,2,\ldots$? Justify your answer.

2010 Today's Calculation Of Integral, 664

For a positive integer $n$, let $I_n=\int_{-\pi}^{\pi} \left(\frac{\pi}{2}-|x|\right)\cos nx\ dx$. Find $I_1+I_2+I_3+I_4$. [i]1992 University of Fukui entrance exam/Medicine[/i]

2007 Romania National Olympiad, 4

Let $f: \mathbb{R}\rightarrow\mathbb{R}$ be a differentiable function with continuous derivative, that satisfies $f\big(x+f'(x)\big)=f(x)$. Let's call this property $(P)$. a) Show that if $f$ is a function with property $(P)$, then there exists a real $x$ such that $f'(x)=0$. b) Give an example of a non-constant function $f$ with property $(P)$. c) Show that if $f$ has property $(P)$ and the equation $f'(x)=0$ has at least two solutions, then $f$ is a constant function.

2014 Online Math Open Problems, 25

If \[ \sum_{n=1}^{\infty}\frac{\frac11 + \frac12 + \dots + \frac 1n}{\binom{n+100}{100}} = \frac pq \] for relatively prime positive integers $p,q$, find $p+q$. [i]Proposed by Michael Kural[/i]

2007 German National Olympiad, 6

For two real numbers a,b the equation: $x^{4}-ax^{3}+6x^{2}-bx+1=0$ has four solutions (not necessarily distinct). Prove that $a^{2}+b^{2}\ge{32}$

1984 IMO Longlists, 20

Prove that $0\le yz+zx+xy-2xyz\le{7\over27}$, where $x,y$ and $z$ are non-negative real numbers satisfying $x+y+z=1$.

2007 Today's Calculation Of Integral, 250

For a positive constant number $ p$, find $ \lim_{n\to\infty} \frac {1}{n^{p \plus{} 1}}\sum_{k \equal{} 0}^{n \minus{} 1} \int_{2k\pi}^{(2k \plus{} 1)\pi} x^p\sin ^ 3 x\cos ^ 2x\ dx.$

2007 ISI B.Stat Entrance Exam, 2

Use calculus to find the behaviour of the function \[y=e^x\sin{x} \ \ \ \ \ \ \ -\infty <x< +\infty\] and sketch the graph of the function for $-2\pi \le x \le 2\pi$. Show clearly the locations of the maxima, minima and points of inflection in your graph.

2006 Romania National Olympiad, 1

Find the maximal value of \[ \left( x^3+1 \right) \left( y^3 + 1\right) , \] where $x,y \in \mathbb R$, $x+y=1$. [i]Dan Schwarz[/i]

2006 Romania National Olympiad, 4

Let $A$ be a set of positive integers with at least 2 elements. It is given that for any numbers $a>b$, $a,b \in A$ we have $\frac{ [a,b] }{ a- b } \in A$, where by $[a,b]$ we have denoted the least common multiple of $a$ and $b$. Prove that the set $A$ has [i]exactly[/i] two elements. [i]Marius Gherghu, Slatina[/i]

2012 Today's Calculation Of Integral, 855

Let $f(x)$ be a function which is differentiable twice and $f''(x)>0$ on $[0,\ 1]$. For a positive integer $n$, find $\lim_{n\to\infty} n\left\{\int_0^1 f(x)\ dx-\frac{1}{n}\sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)\right\}.$

2021 CIIM, 6

Let $0 \le a < b$ be real numbers. Prove that there is no continuous function $f : [a, b] \to \mathbb{R}$ such that \[ \int_a^b f(x)x^{2n} \mathrm dx>0 \quad \text{and} \quad \int_a^b f(x)x^{2n+1} \mathrm dx <0 \] for every integer $n \ge 0$.

2005 Today's Calculation Of Integral, 42

Let $0<t<\frac{\pi}{2}$. Evaluate \[\lim_{t\rightarrow \frac{\pi}{2}} \int_0^t \tan \theta \sqrt{\cos \theta}\ln (\cos \theta)d\theta\]

2006 Harvard-MIT Mathematics Tournament, 9

Compute the sum of all real numbers $x$ such that \[2x^6-3x^5+3x^4+x^3-3x^2+3x-1=0.\]

1996 IMO Shortlist, 4

Let $ a_{1}, a_{2}...a_{n}$ be non-negative reals, not all zero. Show that that (a) The polynomial $ p(x) \equal{} x^{n} \minus{} a_{1}x^{n \minus{} 1} \plus{} ... \minus{} a_{n \minus{} 1}x \minus{} a_{n}$ has preceisely 1 positive real root $ R$. (b) let $ A \equal{} \sum_{i \equal{} 1}^n a_{i}$ and $ B \equal{} \sum_{i \equal{} 1}^n ia_{i}$. Show that $ A^{A} \leq R^{B}$.

2014 Taiwan TST Round 2, 1

Let $a_i > 0$ for $i=1,2,\dots,n$ and suppose $a_1 + a_2 + \dots + a_n = 1$. Prove that for any positive integer $k$, \[ \left( a_1^k + \frac{1}{a_1^k} \right) \left( a_2^k + \frac{1}{a_2^k} \right) \dots \left( a_n^k + \frac{1}{a_n^k} \right) \ge \left( n^k + \frac{1}{n^k} \right)^n. \]