This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2010 Today's Calculation Of Integral, 555

For $ \frac {1}{e} < t < 1$, find the minimum value of $ \int_0^1 |xe^{ \minus{} x} \minus{} tx|dx$.

1991 Arnold's Trivium, 87

Find the derivatives of the lengths of the semiaxes of the ellipsoid $x^2 + y^2 + z^2 + xy + yz + zx = 1 + \epsilon xy$ with respect to $\epsilon$ at $\epsilon = 0$.

2005 Today's Calculation Of Integral, 32

Evaluate \[\int_0^1 e^{x+e^x+e^{e^x}+e^{e^{e^x}}}dx\]

PEN Q Problems, 6

Prove that for a prime $p$, $x^{p-1}+x^{p-2}+ \cdots +x+1$ is irreducible in $\mathbb{Q}[x]$.

2024 CMIMC Integration Bee, 3

\[\int_0^1 \frac{\log(x)}{\sqrt x}\mathrm dx\] [i]Proposed by Robert Trosten[/i]

2007 Gheorghe Vranceanu, 3

Tags: limit , calculus
$ \lim_{n\to\infty } \frac{1}{2^n}\left( \left( \frac{a}{a+b}+\frac{b}{b+c} \right)^n +\left( \frac{b}{b+c}+\frac{c}{c+a} \right)^n +\left( \frac{c}{c+a}+\frac{a}{a+b} \right)^n \right) ,\quad a,b,c>0 $

2009 Albania Team Selection Test, 2

Find all the functions $ f :\mathbb{R}\mapsto\mathbb{R} $ with the following property: $ \forall x$ $f(x)= f(x/2) + (x/2)f'(x)$

1986 Traian Lălescu, 2.1

Let be a nonnegative integer $ n. $ Find all continuous functions $ f:\mathbb{R}_{\ge 0}\longrightarrow\mathbb{R} $ for which the following equation holds: $$ (1+n)\int_0^x f(t) dt =nxf(x) ,\quad\forall x>0. $$

2008 Putnam, B5

Find all continuously differentiable functions $ f: \mathbb{R}\to\mathbb{R}$ such that for every rational number $ q,$ the number $ f(q)$ is rational and has the same denominator as $ q.$ (The denominator of a rational number $ q$ is the unique positive integer $ b$ such that $ q\equal{}a/b$ for some integer $ a$ with $ \gcd(a,b)\equal{}1.$) (Note: $ \gcd$ means greatest common divisor.)

2009 Today's Calculation Of Integral, 518

Evaluate ${ \int_0^{\frac{\pi}{8}}\frac{\cos x}{\cos (x-\frac{\pi}{8}})}\ dx$.

2000 Moldova National Olympiad, Problem 4

Let $f:[0,1]\to\mathbb R$ be a continuous function such that $\int^1_0x^mf(x)dx=0$ for $m=0,1,\ldots,1999$. Prove that $f$ has at least $2000$ zeroes on the segment $[0,1]$.

2010 Contests, 2

In the accompanying figure , $y=f(x)$ is the graph of a one-to-one continuous function $f$ . At each point $P$ on the graph of $y=2x^2$ , assume that the areas $OAP$ and $OBP$ are equal . Here $PA,PB$ are the horizontal and vertical segments . Determine the function $f$. [asy] Label f; xaxis(0,60,blue); yaxis(0,60,blue); real f(real x) { return (x^2)/60; } draw(graph(f,0,53),red); label("$y=x^2$",(30,15),E); real f(real x) { return (x^2)/25; } draw(graph(f,0,38),red); label("$y=2x^2$",(37,37^2/25),E); real f(real x) { return (x^2)/10; } draw(graph(f,0,25),red); label("$y=f(x)$",(24,576/10),W); label("$O(0,0)$",(0,0),S); dot((20,400/25)); dot((20,400/60)); label("$P$",(20,400/25),E); label("$B$",(20,400/60),SE); dot(((4000/25)^(0.5),400/25)); label("$A$",((4000/25)^(0.5),400/25),W); draw((20,400/25)..((4000/25)^(0.5),400/25)); draw((20,400/25)..(20,400/60)); [/asy]

2007 District Olympiad, 3

Find all continuous functions $f : \mathbb R \to \mathbb R$ such that: (a) $\lim_{x \to \infty}f(x)$ exists; (b) $f(x) = \int_{x+1}^{x+2}f(t) \, dt$, for all $x \in \mathbb R$.

2023 AIME, 6

Consider the L-shaped region formed by three unit squares joined at their sides, as shown below. Two points $A$ and $B$ are chosen independently and uniformly at random from inside this region. The probability that the midpoint of $\overline{AB}$ also lies inside this L-shaped region can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [asy] size(2.5cm); draw((0,0)--(0,2)--(1,2)--(1,1)--(2,1)--(2,0)--cycle); draw((0,1)--(1,1)--(1,0), dotted); [/asy]

2008 VJIMC, Problem 2

Find all continuously differentiable functions $f:[0,1]\to(0,\infty)$ such that $\frac{f(1)}{f(0)}=e$ and $$\int^1_0\frac{\text dx}{f(x)^2}+\int^1_0f'(x)^2\text dx\le2.$$