This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 713

2009 Today's Calculation Of Integral, 455

(1) Evaluate $ \int_1^{3\sqrt{3}} \left(\frac{1}{\sqrt[3]{x^2}}\minus{}\frac{1}{1\plus{}\sqrt[3]{x^2}}\right)\ dx.$ (2) Find the positive real numbers $ a,\ b$ such that for $ t>1,$ $ \lim_{t\rightarrow \infty} \left(\int_1^t \frac{1}{1\plus{}\sqrt[3]{x^2}}\ dx\minus{}at^b\right)$ converges.

2005 Today's Calculation Of Integral, 52

Evaluate \[\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n+k\sqrt{-1}}\]

2009 Today's Calculation Of Integral, 450

Let $ a,\ b$ be postive real numbers. Find $ \lim_{n\to\infty} \sum_{k\equal{}1}^n \frac{n}{(k\plus{}an)(k\plus{}bn)}.$

2011 Today's Calculation Of Integral, 752

Find $f_n(x)$ such that $f_1(x)=x,\ f_n(x)=\int_0^x tf_{n-1}(x-t)dt\ (n=2,\ 3,\ \cdots).$

2012 Today's Calculation Of Integral, 778

In the $xyz$ space with the origin $O$, Let $K_1$ be the surface and inner part of the sphere centered on the point $(1,\ 0,\ 0)$ with radius 2 and let $K_2$ be the surface and inner part of the sphere centered on the point $(-1,\ 0,\ 0)$ with radius 2. For three points $P,\ Q,\ R$ in the space, consider points $X,\ Y$ defined by \[\overrightarrow{OX}=\overrightarrow{OP}+\overrightarrow{OQ},\ \overrightarrow{OY}=\frac 13(\overrightarrow{OP}+\overrightarrow{OQ}+\overrightarrow{OR}).\] (1) When $P,\ Q$ move every cranny in $K_1,\ K_2$ respectively, find the volume of the solid generated by the whole points of the point $X$. (2) Find the volume of the solid generated by the whole points of the point $R$ for which for any $P$ belonging to $K_1$ and any $Q$ belonging to $K_2$, $Y$ belongs to $K_1$. (3) Find the volume of the solid generated by the whole points of the point $R$ for which for any $P$ belonging to $K_1$ and any $Q$ belonging to $K_2$, $Y$ belongs to $K_1\cup K_2$.

2011 ISI B.Stat Entrance Exam, 8

Let \[I_n =\int_{0}^{n\pi} \frac{\sin x}{1+x} \, dx , \ \ \ \ n=1,2,3,4\] Arrange $I_1, I_2, I_3, I_4$ in increasing order of magnitude. Justify your answer.

2009 Today's Calculation Of Integral, 449

Evaluate $ \sum_{k\equal{}1}^n \int_0^{\pi} (\sin x\minus{}\cos kx)^2dx.$

2010 Today's Calculation Of Integral, 605

Let $f(x)$ be a differentiable function. Find the following limit value: \[\lim_{n\to\infty} \dbinom{n}{k}\left\{f\left(\frac{x}{n}\right)-f(0)\right\}^k.\] Especially, for $f(x)=(x-\alpha)(x-\beta)$ find the limit value above. 1956 Tokyo Institute of Technology entrance exam

2011 Today's Calculation Of Integral, 717

Let $a_n$ be the area of the part enclosed by the curve $y=x^n\ (n\geq 1)$, the line $x=\frac 12$ and the $x$ axis. Prove that : \[0\leq \ln 2-\frac 12-(a_1+a_2+\cdots\cdots+a_n)\leq \frac {1}{2^{n+1}}\]

2009 Today's Calculation Of Integral, 519

Evaluate $ \int_0^2 \frac{1}{\sqrt {1 \plus{} x^3}}\ dx$.

2007 Today's Calculation Of Integral, 215

For $ a\in\mathbb{R}$, let $ M(a)$ be the maximum value of the function $ f(x)\equal{}\int_{0}^{\pi}\sin (x\minus{}t)\sin (2t\minus{}a)\ dt$. Evaluate $ \int_{0}^{\frac{\pi}{2}}M(a)\sin (2a)\ da$.

2009 Today's Calculation Of Integral, 492

Find the volume formed by the revolution of the region satisfying $ 0\leq y\leq (x \minus{} p)(q \minus{} x)\ (0 < p < q)$ in the coordinate plane about the $ y$ -axis. You are not allowed to use the formula: $ V \equal{} \boxed{\int_a^b 2\pi x|f(x)|\ dx\ (a < b)}$ here.

2010 Today's Calculation Of Integral, 668

Consider two curves $y=\sin x,\ y=\sin 2x$ in $0\leq x\leq 2\pi$. (1) Let $(\alpha ,\ \beta)\ (0<\alpha <\pi)$ be the intersection point of the curves. If $\sin x-\sin 2x$ has a local minimum at $x=x_1$ and a local maximum at $x=x_2$, then find the values of $\cos x_1,\ \cos x_1\cos x_2$. (2) Find the area enclosed by the curves, then find the volume of the part generated by a rotation of the part of $\alpha \leq x\leq \pi$ for the figure about the line $y=-1$. [i]2011 Kyorin University entrance exam/Medicine [/i]

2009 Today's Calculation Of Integral, 447

Evaluate $ \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{x^2}{(1\plus{}x\tan x)(x\minus{}\tan x)\cos ^ 2 x}\ dx.$

2010 Today's Calculation Of Integral, 640

Evaluate $\int_0^{\frac{\pi}{4}} \frac{1}{1-\sin x}\sqrt{\frac{\cos x}{1+\cos x+\sin x}}dx.$ Own

2009 Today's Calculation Of Integral, 448

Evaluate $ \int_0^{\ln 2} \frac {2e^x \plus{} 1}{e^{3x} \plus{} 2e^{2x} \plus{} e^{x} \minus{} e^{ \minus{} x}}\ dx.$

2011 Today's Calculation Of Integral, 688

For a real number $x$, let $f(x)=\int_0^{\frac{\pi}{2}} |\cos t-x\sin 2t|\ dt$. (1) Find the minimum value of $f(x)$. (2) Evaluate $\int_0^1 f(x)\ dx$. [i]2011 Tokyo Institute of Technology entrance exam, Problem 2[/i]

2009 Today's Calculation Of Integral, 515

Find the maximum and minimum values of $ \int_0^{\pi} (a\sin x \plus{} b\cos x)^3dx$ for $ |a|\leq 1,\ |b|\leq 1$. Note that you are not allowed to solve in using partial differentiation here.

2010 Today's Calculation Of Integral, 574

Let $ n$ be a positive integer. Prove that $ x^ne^{1\minus{}x}\leq n!$ for $ x\geq 0$,

2005 Today's Calculation Of Integral, 51

A function $f(x)$ satisfies $f(x)=f\left(\frac{c}{x}\right)$ for some real number $c(>1)$ and all positive number $x$. If $\int_1^{\sqrt{c}} \frac{f(x)}{x} dx=3$, evaluate $\int_1^c \frac{f(x)}{x} dx$

2011 Today's Calculation Of Integral, 727

For positive constant $a$, let $C: y=\frac{a}{2}(e^{\frac{x}{a}}+e^{-\frac{x}{a}})$. Denote by $l(t)$ the length of the part $a\leq y\leq t$ for $C$ and denote by $S(t)$ the area of the part bounded by the line $y=t\ (a<t)$ and $C$. Find $\lim_{t\to\infty} \frac{S(t)}{l(t)\ln t}.$

2011 Today's Calculation Of Integral, 702

$f(x)$ is a continuous function defined in $x>0$. For all $a,\ b\ (a>0,\ b>0)$, if $\int_a^b f(x)\ dx$ is determined by only $\frac{b}{a}$, then prove that $f(x)=\frac{c}{x}\ (c: constant).$

2005 Today's Calculation Of Integral, 68

Find the minimum value of $\int_1^e \left|\ln x-\frac{a}{x}\right|dx\ (0\leq a\leq e)$

2010 Today's Calculation Of Integral, 553

Find the continuous function such that $ f(x)\equal{}\frac{e^{2x}}{2(e\minus{}1)}\int_0^1 e^{\minus{}y}f(y)dy\plus{}\int_0^{\frac 12} f(y)dy\plus{}\int_0^{\frac 12}\sin ^ 2(\pi y)dy$.

2009 Today's Calculation Of Integral, 505

In the $ xyz$ space with the origin $ O$, given a cuboid $ K: |x|\leq \sqrt {3},\ |y|\leq \sqrt {3},\ 0\leq z\leq 2$ and the plane $ \alpha : z \equal{} 2$. Draw the perpendicular $ PH$ from $ P$ to the plane. Find the volume of the solid formed by all points of $ P$ which are included in $ K$ such that $ \overline{OP}\leq \overline{PH}$.