This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 713

2010 Today's Calculation Of Integral, 617

Let $y=f(x)$ be a function of the graph of broken line connected by points $(-1,\ 0),\ (0,\ 1),\ (1,\ 4)$ in the $x$ -$y$ plane. Find the minimum value of $\int_{-1}^1 \{f(x)-(a|x|+b)\}^2dx.$ [i]2010 Tohoku University entrance exam/Economics, 2nd exam[/i]

2007 Today's Calculation Of Integral, 232

For $ f(x)\equal{}1\minus{}\sin x$, let $ g(x)\equal{}\int_0^x (x\minus{}t)f(t)\ dt.$ Show that $ g(x\plus{}y)\plus{}g(x\minus{}y)\geq 2g(x)$ for any real numbers $ x,\ y.$

2009 Today's Calculation Of Integral, 470

Determin integers $ m,\ n\ (m>n>0)$ for which the area of the region bounded by the curve $ y\equal{}x^2\minus{}x$ and the lines $ y\equal{}mx,\ y\equal{}nx$ is $ \frac{37}{6}$.

2009 Today's Calculation Of Integral, 479

Let $ a,\ b$ be real constants. Find the minimum value of the definite integral: $ I(a,\ b)\equal{}\int_0^{\pi} (1\minus{}a\sin x \minus{}b\sin 2x)^2 dx.$

2010 Today's Calculation Of Integral, 628

(1) Evaluate the following definite integrals. (a) $\int_0^{\frac{\pi}{2}} \cos ^ 2 x\sin x\ dx$ (b) $\int_0^{\frac{\pi}{2}} (\pi - 2x)\cos x\ dx$ (c) $\int_0^{\frac{\pi}{2}} x\cos ^ 3 x\ dx$ (2) Let $a$ be a positive constant. Find the area of the cross section cut by the plane $z=\sin \theta \ \left(0\leq \theta \leq \frac{\pi}{2}\right)$ of the solid such that \[x^2+y^2+z^2\leq a^2,\ \ x^2+y^2\leq ax,\ \ z\geq 0\] , then find the volume of the solid. [i]1984 Yamanashi Medical University entrance exam[/i] Please slove the problem without multi integral or arcsine function for Japanese high school students aged 17-18 those who don't study them. Thanks in advance. kunny

2011 Today's Calculation Of Integral, 723

Evaluate $\int_1^e \frac{\{1-(x-1)e^{x}\}\ln x}{(1+e^x)^2}dx.$

2010 Today's Calculation Of Integral, 556

Prove the following inequality. \[ \sqrt[3]{\int_0^{\frac {\pi}{4}} \frac {x}{\cos ^ 2 x\cos ^ 2 (\tan x)\cos ^ 2(\tan (\tan x))\cos ^ 2(\tan (\tan (\tan x)))}dx}<\frac{4}{\pi}\] Last Edited. Sorry, I have changed the problem. kunny

2011 Today's Calculation Of Integral, 679

Find $\sum_{k=1}^{3n} \frac{1}{\int_0^1 x(1-x)^k\ dx}$. [i]2011 Hosei University entrance exam/Design and Enginerring[/i]

2009 Today's Calculation Of Integral, 508

Compare the size of the definite integrals? \[ \int_0^{\frac {\pi}{4}} x^{2008}\tan ^{2008}x\ dx,\ \int_0^{\frac {\pi}{4}} x^{2009}\tan ^{2009}x\ dx,\ \int_0^{\frac {\pi}{4}} x^{2010}\tan ^{2010}x\ dx\]

2011 Today's Calculation Of Integral, 738

Answer the following questions: (1) Find the value of $a$ for which $S=\int_{-\pi}^{\pi} (x-a\sin 3x)^2dx$ is minimized, then find the minimum value. (2) Find the vlues of $p,\ q$ for which $T=\int_{-\pi}^{\pi} (\sin 3x-px-qx^2)^2dx$ is minimized, then find the minimum value.

2001 Vietnam National Olympiad, 3

For real $a, b$ define the sequence $x_{0}, x_{1}, x_{2}, ...$ by $x_{0}= a, x_{n+1}= x_{n}+b \sin x_{n}$. If $b = 1$, show that the sequence converges to a finite limit for all $a$. If $b > 2$, show that the sequence diverges for some $a$.

2005 Today's Calculation Of Integral, 1

Calculate the following indefinite integral. [1] $\int \frac{e^{2x}}{(e^x+1)^2}dx$ [2] $\int \sin x\cos 3x dx$ [3] $\int \sin 2x\sin 3x dx$ [4] $\int \frac{dx}{4x^2-12x+9}$ [5] $\int \cos ^4 x dx$

2011 Today's Calculation Of Integral, 691

Let $a$ be a constant. In the $xy$ palne, the curve $C_1:y=\frac{\ln x}{x}$ touches $C_2:y=ax^2$. Find the volume of the solid generated by a rotation of the part enclosed by $C_1,\ C_2$ and the $x$ axis about the $x$ axis. [i]2011 Yokohama National Universty entrance exam/Engineering[/i]

2010 Today's Calculation Of Integral, 616

Evaluate $\int_1^3 \frac{\ln (x+1)}{x^2}dx$. [i]2010 Hirosaki University entrance exam[/i]

2007 Today's Calculation Of Integral, 223

Evaluate $ \int_{0}^{\pi}\sqrt{(\cos x\plus{}\cos 2x\plus{}\cos 3x)^{2}\plus{}(\sin x\plus{}\sin 2x\plus{}\sin 3x)^{2}}\ dx$.

2008 Harvard-MIT Mathematics Tournament, 8

Let $ T \equal{} \int_0^{\ln2} \frac {2e^{3x} \plus{} e^{2x} \minus{} 1} {e^{3x} \plus{} e^{2x} \minus{} e^x \plus{} 1}dx$. Evaluate $ e^T$.

2010 Today's Calculation Of Integral, 538

Evaluate $ \int_1^{\sqrt{2}} \frac{x^2\plus{}1}{x\sqrt{x^4\plus{}1}}\ dx$.

2013 Waseda University Entrance Examination, 3

Let $f(x)=\frac 12e^{2x}+2e^x+x$. Answer the following questions. (1) For a real number $t$, set $g(x)=tx-f(x).$ When $x$ moves in the range of all real numbers, find the range of $t$ for which $g(x)$ has maximum value, then for the range of $t$, find the maximum value of $g(x)$ and the value of $x$ which gives the maximum value. (2) Denote by $m(t)$ the maximum value found in $(1)$. Let $a$ be a constant, consider a function of $t$, $h(t)=at-m(t)$. When $t$ moves in the range of $t$ found in $(1)$, find the maximum value of $h(t)$.

2011 Today's Calculation Of Integral, 722

Find the continuous function $f(x)$ such that : \[\int_0^x f(t)\left(\int_0^t f(t)dt\right)dt=f(x)+\frac 12\]

2013 Today's Calculation Of Integral, 895

In the coordinate plane, suppose that the parabola $C: y=-\frac{p}{2}x^2+q\ (p>0,\ q>0)$ touches the circle with radius 1 centered on the origin at distinct two points. Find the minimum area of the figure enclosed by the part of $y\geq 0$ of $C$ and the $x$-axis.

2009 ISI B.Stat Entrance Exam, 6

Let $f(x)$ be a function satisfying \[xf(x)=\ln x \ \ \ \ \ \ \ \ \text{for} \ \ x>0\] Show that $f^{(n)}(1)=(-1)^{n+1}n!\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)$ where $f^{(n)}(x)$ denotes the $n$-th derivative evaluated at $x$.

2009 Today's Calculation Of Integral, 415

For a function $ f(x) \equal{} 6x(1 \minus{} x)$, suppose that positive constant $ c$ and a linear function $ g(x) \equal{} ax \plus{} b\ (a,\ b: \text{constants}\,\ a > 0)$ satisfy the following 3 conditions: $ c^2\int_0^1 f(x)\ dx \equal{} 1,\ \int_0^1 f(x)\{g(x)\}^2\ dx \equal{} 1,\ \int_0^1 f(x)g(x)\ dx \equal{} 0$. Answer the following questions. (1) Find the constants $ a,\ b,\ c$. (2) For natural number $ n$, let $ I_n \equal{} \int_0^1 x^ne^x\ dx$. Express $ I_{n \plus{} 1}$ in terms of $ I_n$. Then evaluate $ I_1,\ I_2,\ I_3$. (3) Evaluate the definite integrals $ \int_0^1 e^xf(x)\ dx$ and $ \int_0^1 e^xf(x)g(x)\ dx$. (4) For real numbers $ s,\ t$, define $ J \equal{} \int_0^1 \{e^x \minus{} cs \minus{} tg(x)\}^2\ dx$. Find the constants $ A,\ B,\ C,\ D,\ E$ by setting $ J \equal{} As^2 \plus{} Bst \plus{} Ct^2 \plus{} Ds\plus{}Et \plus{} F$. (You don't need to find the constant $ F$). (5) Find the values of $ s,\ t$ for which $ J$ is minimal.

2010 Today's Calculation Of Integral, 598

For a constant $a$, denote $C(a)$ the part $x\geq 1$ of the curve $y=\sqrt{x^2-1}+\frac{a}{x}$. (1) Find the maximum value $a_0$ of $a$ such that $C(a)$ is contained to lower part of $y=x$, or $y<x$. (2) For $0<\theta <\frac{\pi}{2}$, find the volume $V(\theta)$ of the solid $V$ obtained by revoloving the figure bounded by $C(a_0)$ and three lines $y=x,\ x=1,\ x=\frac{1}{\cos \theta}$ about the $x$-axis. (3) Find $\lim_{\theta \rightarrow \frac{\pi}{2}-0} V(\theta)$. 1992 Tokyo University entrance exam/Science, 2nd exam

2011 Tokyo Instutute Of Technology Entrance Examination, 2

For a real number $x$, let $f(x)=\int_0^{\frac{\pi}{2}} |\cos t-x\sin 2t|\ dt$. (1) Find the minimum value of $f(x)$. (2) Evaluate $\int_0^1 f(x)\ dx$. [i]2011 Tokyo Institute of Technology entrance exam, Problem 2[/i]

Today's calculation of integrals, 889

Find the area $S$ of the region enclosed by the curve $y=\left|x-\frac{1}{x}\right|\ (x>0)$ and the line $y=2$.