This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 29

1997 Iran MO (3rd Round), 4

Let $x, y, z$ be real numbers greater than $1$ such that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2$. Prove that \[\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\leq \sqrt{x+y+z}.\]

2011 Iran MO (3rd Round), 4

For positive real numbers $a,b$ and $c$ we have $a+b+c=3$. Prove $\frac{a}{1+(b+c)^2}+\frac{b}{1+(a+c)^2}+\frac{c}{1+(a+b)^2}\le \frac{3(a^2+b^2+c^2)}{a^2+b^2+c^2+12abc}$. [i]proposed by Mohammad Ahmadi[/i]

2010 Contests, 2

For each positive integer $n$, find the largest real number $C_n$ with the following property. Given any $n$ real-valued functions $f_1(x), f_2(x), \cdots, f_n(x)$ defined on the closed interval $0 \le x \le 1$, one can find numbers $x_1, x_2, \cdots x_n$, such that $0 \le x_i \le 1$ satisfying \[|f_1(x_1)+f_2(x_2)+\cdots f_n(x_n)-x_1x_2\cdots x_n| \ge C_n\] [i]Marko Radovanović, Serbia[/i]

2008 Iran MO (3rd Round), 4

Let $ x,y,z\in\mathbb R^{\plus{}}$ and $ x\plus{}y\plus{}z\equal{}3$. Prove that: \[ \frac{x^3}{y^3\plus{}8}\plus{}\frac{y^3}{z^3\plus{}8}\plus{}\frac{z^3}{x^3\plus{}8}\geq\frac19\plus{}\frac2{27}(xy\plus{}xz\plus{}yz)\]

2008 China Team Selection Test, 5

For two given positive integers $ m,n > 1$, let $ a_{ij} (i = 1,2,\cdots,n, \; j = 1,2,\cdots,m)$ be nonnegative real numbers, not all zero, find the maximum and the minimum values of $ f$, where \[ f = \frac {n\sum_{i = 1}^{n}(\sum_{j = 1}^{m}a_{ij})^2 + m\sum_{j = 1}^{m}(\sum_{i= 1}^{n}a_{ij})^2}{(\sum_{i = 1}^{n}\sum_{j = 1}^{m}a_{ij})^2 + mn\sum_{i = 1}^{n}\sum_{j=1}^{m}a_{ij}^2}. \]

2016 Iran MO (3rd Round), 2

Let $a,b,c \in \mathbb {R}^{+}$ and $abc=1$ prove that: $\frac {a+b}{(a+b+1)^2}+\frac {b+c}{(b+c+1)^2}+\frac {c+a}{(c+a+1)^2} \geq \frac {2}{a+b+c}$

2010 Romanian Masters In Mathematics, 2

For each positive integer $n$, find the largest real number $C_n$ with the following property. Given any $n$ real-valued functions $f_1(x), f_2(x), \cdots, f_n(x)$ defined on the closed interval $0 \le x \le 1$, one can find numbers $x_1, x_2, \cdots x_n$, such that $0 \le x_i \le 1$ satisfying \[|f_1(x_1)+f_2(x_2)+\cdots f_n(x_n)-x_1x_2\cdots x_n| \ge C_n\] [i]Marko Radovanović, Serbia[/i]

2006 China Team Selection Test, 2

$x_{1}, x_{2}, \cdots, x_{n}$ are positive numbers such that $\sum_{i=1}^{n}x_{i}= 1$. Prove that \[\left( \sum_{i=1}^{n}\sqrt{x_{i}}\right) \left( \sum_{i=1}^{n}\frac{1}{\sqrt{1+x_{i}}}\right) \leq \frac{n^{2}}{\sqrt{n+1}}\]

2003 China Girls Math Olympiad, 1

Let $ ABC$ be a triangle. Points $ D$ and $ E$ are on sides $ AB$ and $ AC,$ respectively, and point $ F$ is on line segment $ DE.$ Let $ \frac {AD}{AB} \equal{} x,$ $ \frac {AE}{AC} \equal{} y,$ $ \frac {DF}{DE} \equal{} z.$ Prove that (1) $ S_{\triangle BDF} \equal{} (1 \minus{} x)y S_{\triangle ABC}$ and $ S_{\triangle CEF} \equal{} x(1 \minus{} y) (1 \minus{} z)S_{\triangle ABC};$ (2) $ \sqrt [3]{S_{\triangle BDF}} \plus{} \sqrt [3]{S_{\triangle CEF}} \leq \sqrt [3]{S_{\triangle ABC}}.$

2011 Middle European Mathematical Olympiad, 2

Let $a, b, c$ be positive real numbers such that \[\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=2.\] Prove that \[\frac{\sqrt a + \sqrt b+\sqrt c}{2} \geq \frac{1}{\sqrt a}+\frac{1}{\sqrt b}+\frac{1}{\sqrt c}.\]

2009 Brazil National Olympiad, 3

Let $ n > 3$ be a fixed integer and $ x_1,x_2,\ldots, x_n$ be positive real numbers. Find, in terms of $ n$, all possible real values of \[ {x_1\over x_n\plus{}x_1\plus{}x_2} \plus{} {x_2\over x_1\plus{}x_2\plus{}x_3} \plus{} {x_3\over x_2\plus{}x_3\plus{}x_4} \plus{} \cdots \plus{} {x_{n\minus{}1}\over x_{n\minus{}2}\plus{}x_{n\minus{}1}\plus{}x_n} \plus{} {x_n\over x_{n\minus{}1}\plus{}x_n\plus{}x_1}\]

2010 Middle European Mathematical Olympiad, 6

For each integer $n\geqslant2$, determine the largest real constant $C_n$ such that for all positive real numbers $a_1, \ldots, a_n$ we have \[\frac{a_1^2+\ldots+a_n^2}{n}\geqslant\left(\frac{a_1+\ldots+a_n}{n}\right)^2+C_n\cdot(a_1-a_n)^2\mbox{.}\] [i](4th Middle European Mathematical Olympiad, Team Competition, Problem 2)[/i]

2010 Romanian Master of Mathematics, 2

For each positive integer $n$, find the largest real number $C_n$ with the following property. Given any $n$ real-valued functions $f_1(x), f_2(x), \cdots, f_n(x)$ defined on the closed interval $0 \le x \le 1$, one can find numbers $x_1, x_2, \cdots x_n$, such that $0 \le x_i \le 1$ satisfying \[|f_1(x_1)+f_2(x_2)+\cdots f_n(x_n)-x_1x_2\cdots x_n| \ge C_n\] [i]Marko Radovanović, Serbia[/i]

2010 Postal Coaching, 4

$\triangle ABC$ has semiperimeter $s$ and area $F$ . A square $P QRS$ with side length $x$ is inscribed in $ABC$ with $P$ and $Q$ on $BC$, $R$ on $AC$, and $S$ on $AB$. Similarly, $y$ and $z$ are the sides of squares two vertices of which lie on $AC$ and $AB$, respectively. Prove that \[\frac 1x +\frac 1y + \frac 1z \le \frac{s(2+\sqrt3)}{2F}\]

2012 Romania National Olympiad, 3

[color=darkred]Let $\mathcal{C}$ be the set of integrable functions $f\colon [0,1]\to\mathbb{R}$ such that $0\le f(x)\le x$ for any $x\in [0,1]$ . Define the function $V\colon\mathcal{C}\to\mathbb{R}$ by \[V(f)=\int_0^1f^2(x)\ \text{d}x-\left(\int_0^1f(x)\ \text{d}x\right)^2\ ,\ f\in\mathcal{C}\ .\] Determine the following two sets: [list][b]a)[/b] $\{V(f_a)\, |\, 0\le a\le 1\}$ , where $f_a(x)=0$ , if $0\le x\le a$ and $f_a(x)=x$ , if $a<x\le 1\, ;$ [b]b)[/b] $\{V(f)\, |\, f\in\mathcal{C}\}\ .$[/list] [/color]

2006 China Team Selection Test, 2

$x_{1}, x_{2}, \cdots, x_{n}$ are positive numbers such that $\sum_{i=1}^{n}x_{i}= 1$. Prove that \[\left( \sum_{i=1}^{n}\sqrt{x_{i}}\right) \left( \sum_{i=1}^{n}\frac{1}{\sqrt{1+x_{i}}}\right) \leq \frac{n^{2}}{\sqrt{n+1}}\]

2008 Serbia National Math Olympiad, 3

Let $ a$, $ b$, $ c$ be positive real numbers such that $ a \plus{} b \plus{} c \equal{} 1$. Prove inequality: \[ \frac{1}{bc \plus{} a \plus{} \frac{1}{a}} \plus{} \frac{1}{ac \plus{} b \plus{} \frac{1}{b}} \plus{} \frac{1}{ab \plus{} c \plus{} \frac{1}{c}} \leqslant \frac{27}{31}.\]

2008 Balkan MO, 2

Is there a sequence $ a_1,a_2,\ldots$ of positive reals satisfying simoultaneously the following inequalities for all positive integers $ n$: a) $ a_1\plus{}a_2\plus{}\ldots\plus{}a_n\le n^2$ b) $ \frac1{a_1}\plus{}\frac1{a_2}\plus{}\ldots\plus{}\frac1{a_n}\le2008$?

2019 District Olympiad, 1

Let $n \in \mathbb{N}, n \ge 2$ and the positive real numbers $a_1,a_2,…,a_n$ and $b_1,b_2,…,b_n$ such that $a_1+a_2+…+a_n=b_1+b_2+…+b_n=S.$ $\textbf{a)}$ Prove that $\sum\limits_{k=1}^n \frac{a_k^2}{a_k+b_k} \ge \frac{S}{2}.$ $\textbf{b)}$ Prove that $\sum\limits_{k=1}^n \frac{a_k^2}{a_k+b_k}= \sum\limits_{k=1}^n \frac{b_k^2}{a_k+b_k}.$

2004 China Western Mathematical Olympiad, 4

Suppose that $ a$, $ b$, $ c$ are positive real numbers, prove that \[ 1 < \frac {a}{\sqrt {a^{2} \plus{} b^{2}}} \plus{} \frac {b}{\sqrt {b^{2} \plus{} c^{2}}} \plus{} \frac {c}{\sqrt {c^{2} \plus{} a^{2}}}\leq\frac {3\sqrt {2}}{2} \]

2003 Romania Team Selection Test, 2

Let $ABC$ be a triangle with $\angle BAC=60^\circ$. Consider a point $P$ inside the triangle having $PA=1$, $PB=2$ and $PC=3$. Find the maximum possible area of the triangle $ABC$.

2002 Czech-Polish-Slovak Match, 6

Let $n \ge 2$ be a fixed even integer. We consider polynomials of the form \[P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + 1\] with real coefficients, having at least one real roots. Find the least possible value of $a^2_1 + a^2_2 + \cdots + a^2_{n-1}$.

2008 Balkan MO Shortlist, A2

Is there a sequence $ a_1,a_2,\ldots$ of positive reals satisfying simoultaneously the following inequalities for all positive integers $ n$: a) $ a_1\plus{}a_2\plus{}\ldots\plus{}a_n\le n^2$ b) $ \frac1{a_1}\plus{}\frac1{a_2}\plus{}\ldots\plus{}\frac1{a_n}\le2008$?

MathLinks Contest 7th, 4.3

Let $ a,b,c$ be positive real numbers such that $ ab\plus{}bc\plus{}ca\equal{}3$. Prove that \[ \frac 1{1\plus{}a^2(b\plus{}c)} \plus{} \frac 1{1\plus{}b^2(c\plus{}a)} \plus{} \frac 1 {1\plus{}c^2(a\plus{}b) } \leq \frac 3 {1\plus{}2abc} .\]

2010 Moldova National Olympiad, 9.1

$a$,$b$,$c$ are real. What is the highest value of $a+b+c$ if $a^2+4b^2+9c^2-2a-12b+6c+2=0$