This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 189

1999 Tournament Of Towns, 6

On a large chessboard $2n$ of its $1 \times 1$ squares have been marked such thar the rook (which moves only horizontally or vertically) can visit all the marked squares without jumpin over any unmarked ones. Prove that the figure consisting of all the marked squares can be cut into rectangles. (A Shapovalov)

2014 Saudi Arabia Pre-TST, 1.4

Majid wants to color the cells of an $n\times n$ chessboard into white and black so that each $2\times 2$ subsquare contains two white cells and two black cells. In how many ways can Majid color this $n\times n$ chessboard?

2018 Caucasus Mathematical Olympiad, 2

On a chessboard $8\times 8$, $n>6$ Knights are placed so that for any 6 Knights there are two Knights that attack each other. Find the greatest possible value of $n$.

2000 Poland - Second Round, 3

On fields of $n \times n$ chessboard $n^2$ different integers have been arranged, one in each field. In each column, field with biggest number was colored in red. Set of $n$ fields of chessboard name [i]admissible[/i], if no two of that fields aren't in the same row and aren't in the same column. From all admissible sets, set with biggest sum of numbers in it's fields has been chosen. Prove that red field is in this set.

2022 Indonesia TST, C

Distinct pebbles are placed on a $1001 \times 1001$ board consisting of $1001^2$ unit tiles, such that every unit tile consists of at most one pebble. The [i]pebble set[/i] of a unit tile is the set of all pebbles situated in the same row or column with said unit tile. Determine the minimum amount of pebbles that must be placed on the board so that no two distinct tiles have the same [i]pebble set[/i]. [hide=Where's the Algebra Problem?]It's already posted [url=https://artofproblemsolving.com/community/c6h2742895_simple_inequality]here[/url].[/hide]

2010 BAMO, 4

Place eight rooks on a standard $8 \times 8$ chessboard so that no two are in the same row or column. With the standard rules of chess, this means that no two rooks are attacking each other. Now paint $27$ of the remaining squares (not currently occupied by rooks) red. Prove that no matter how the rooks are arranged and which set of $27$ squares are painted, it is always possible to move some or all of the rooks so that: • All the rooks are still on unpainted squares. • The rooks are still not attacking each other (no two are in the same row or same column). • At least one formerly empty square now has a rook on it; that is, the rooks are not on the same $8$ squares as before.

2017 Baltic Way, 8

A chess knight has injured his leg and is limping. He alternates between a normal move and a short move where he moves to any diagonally neighbouring cell. The limping knight moves on a $5 \times 6$ cell chessboard starting with a normal move. What is the largest number of moves he can make if he is starting from a cell of his own choice and is not allowed to visit any cell (including the initial cell) more than once?

1997 Tournament Of Towns, (559) 4

The maximum possible number of knights are placed on a $5 \times 5$ chessboard so that no two attack each other. Prove that there is only one possible placement. (A Kanel)

2021 Regional Olympiad of Mexico Center Zone, 4

Two types of pieces, bishops and rooks, are to be placed on a $10\times 10$ chessboard (without necessarily filling it) such that each piece occupies exactly one square of the board. A bishop $B$ is said to [i]attack[/i] a piece $P$ if $B$ and $P$ are on the same diagonal and there are no pieces between $B$ and $P$ on that diagonal; a rook $R$ is said to attack a piece $P$ if $R$ and $P$ are on the same row or column and there are no pieces between $R$ and $P$ on that row or column. A piece $P$ is [i]chocolate[/i] if no other piece $Q$ attacks $P$. What is the maximum number of chocolate pieces there may be, after placing some pieces on the chessboard? [i]Proposed by José Alejandro Reyes González[/i]

2021 Middle European Mathematical Olympiad, 2

Let $m$ and $n$ be positive integers. Some squares of an $m \times n$ board are coloured red. A sequence $a_1, a_2, \ldots , a_{2r}$ of $2r \ge 4$ pairwise distinct red squares is called a [i]bishop circuit[/i] if for every $k \in \{1, \ldots , 2r \}$, the squares $a_k$ and $a_{k+1}$ lie on a diagonal, but the squares $a_k$ and $a_{k+2}$ do not lie on a diagonal (here $a_{2r+1}=a_1$ and $a_{2r+2}=a_2$). In terms of $m$ and $n$, determine the maximum possible number of red squares on an $m \times n$ board without a bishop circuit. ([i]Remark.[/i] Two squares lie on a diagonal if the line passing through their centres intersects the sides of the board at an angle of $45^\circ$.)

1999 Tournament Of Towns, 4

(a) On each of the $1 \times 1$ squares of the top row of an $8 \times 8$ chessboard there is a black pawn, and on each of the $1 \times 1$ squares of the bottom row of this chessboard there is a white pawn. On each move one can shift any pawn vertically or horizontally to any adjacent empty $1 \times 1$ square. What is the smallest number of moves that are needed to move all white pawns to the top row and all black pawns to the bottom one? (b) The same question for a $7 \times 7$ board. (A Shapovalov_

1987 Tournament Of Towns, (138) 3

Nine pawns forming a $3$ by $3$ square are placed in the lower left hand corner of an $8$ by $8$ chessboard. Any pawn may jump over another one standing next to it into a free square, i .e. may be reflected symmetrically with respect to a neighb our's centre (jumps may be horizontal , vertical or diagonal) . It is required to rearrange the nine pawns in another corner of the chessboard (in another $3$ by $3$ square) by means of such jumps. Can the pawns be thus re-arranged in the (a) upper left hand corner? (b) upper right hand corner? (J . E . Briskin)

1999 Estonia National Olympiad, 5

On the squares $a1, a2,... , a8$ of a chessboard there are respectively $2^0, 2^1, ..., 2^7$ grains of oat, on the squares $b8, b7,..., b1$ respectively $2^8, 2^9, ..., 2^{15}$ grains of oat, on the squares $c1, c2,..., c8$ respectively $2^{16}, 2^{17}, ..., 2^{23}$ grains of oat etc. (so there are $2^{63}$ grains of oat on the square $h1$). A knight starts moving from some square and eats after each move all the grains of oat on the square to which it had jumped, but immediately after the knight leaves the square the same number of grains of oat reappear. With the last move the knight arrives to the same square from which it started moving. Prove that the number of grains of oat eaten by the knight is divisible by $3$.

2005 Tournament of Towns, 4

Tags: chessboard
A chess piece moves as follows: it can jump 8 or 9 squares either vertically or horizontally. It is not allowed to visit the same square twice. At most, how many squares can this piece visit on a $15 \times 15$ board (it can start from any square)? [i](4 points)[/i]

2009 IMO Shortlist, 6

On a $999\times 999$ board a [i]limp rook[/i] can move in the following way: From any square it can move to any of its adjacent squares, i.e. a square having a common side with it, and every move must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A [i]non-intersecting route[/i] of the limp rook consists of a sequence of pairwise different squares that the limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting route is called [i]cyclic[/i], if the limp rook can, after reaching the last square of the route, move directly to the first square of the route and start over. How many squares does the longest possible cyclic, non-intersecting route of a limp rook visit? [i]Proposed by Nikolay Beluhov, Bulgaria[/i]

Fractal Edition 2, P4

Tags: chessboard
In the bottom-left corner of a chessboard (with 8 rows and 8 columns), there is a king. Marius and Alexandru play a game, with Alexandru going first. On their turn, each player moves the king either one square to the right, one square up, or one square diagonally up-right. The player who moves the king to the top-right corner square wins. Who will win if both players play optimally?

2016 IFYM, Sozopol, 6

We are given a chessboard 100 x 100, $k$ barriers (each with length 1), and one ball. We want to put the barriers between the cells of the board and put the ball in some cell, in such way that the ball can get to each possible cell on the board. The only way that the ball can move is by lifting the board so it can go only forward, backward, to the left or to the right. The ball passes all cells on its way until it reaches a barrier or the edge of the board where it stops. What’s the least number of barriers we need so we can achieve that?

2009 IMO Shortlist, 4

For an integer $m\geq 1$, we consider partitions of a $2^m\times 2^m$ chessboard into rectangles consisting of cells of chessboard, in which each of the $2^m$ cells along one diagonal forms a separate rectangle of side length $1$. Determine the smallest possible sum of rectangle perimeters in such a partition. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

2010 IMO Shortlist, 3

2500 chess kings have to be placed on a $100 \times 100$ chessboard so that [b](i)[/b] no king can capture any other one (i.e. no two kings are placed in two squares sharing a common vertex); [b](ii)[/b] each row and each column contains exactly 25 kings. Find the number of such arrangements. (Two arrangements differing by rotation or symmetry are supposed to be different.) [i]Proposed by Sergei Berlov, Russia[/i]

2010 Germany Team Selection Test, 3

On a $999\times 999$ board a [i]limp rook[/i] can move in the following way: From any square it can move to any of its adjacent squares, i.e. a square having a common side with it, and every move must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A [i]non-intersecting route[/i] of the limp rook consists of a sequence of pairwise different squares that the limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting route is called [i]cyclic[/i], if the limp rook can, after reaching the last square of the route, move directly to the first square of the route and start over. How many squares does the longest possible cyclic, non-intersecting route of a limp rook visit? [i]Proposed by Nikolay Beluhov, Bulgaria[/i]

2010 Lithuania National Olympiad, 3

In an $m\times n$ rectangular chessboard,there is a stone in the lower leftmost square. Two persons A,B move the stone alternately. In each step one can move the stone upward or rightward any number of squares. The one who moves it into the upper rightmost square wins. Find all $(m,n)$ such that the first person has a winning strategy.

1974 IMO, 4

Consider decompositions of an $8\times 8$ chessboard into $p$ non-overlapping rectangles subject to the following conditions: (i) Each rectangle has as many white squares as black squares. (ii) If $a_i$ is the number of white squares in the $i$-th rectangle, then $a_1<a_2<\ldots <a_p$. Find the maximum value of $p$ for which such a decomposition is possible. For this value of $p$, determine all possible sequences $a_1,a_2,\ldots ,a_p$.

2018 Pan-African Shortlist, C3

A game is played on an $m \times n$ chessboard. At the beginning, there is a coin on one of the squares. Two players take turns to move the coin to an adjacent square (horizontally or vertically). The coin may never be moved to a square that has been occupied before. If a player cannot move any more, he loses. Prove: [list] [*] If the size (number of squares) of the board is even, then the player to move first has a winning strategy, regardless of the initial position. [*] If the size of the board is odd, then the player to move first has a winning strategy if and only if the coin is initially placed on a square whose colour is not the same as the colour of the corners. [/list]

2015 IFYM, Sozopol, 7

A corner with arm $n$ is a figure made of $2n-1$ unit squares, such that 2 rectangles $1$ x $(n-1)$ are connected to two adjacent sides of a square $1$ x $1$, so that their unit sides coincide. The squares or a chessboard $100$ x $100$ are colored in 15 colors. We say that a corner with arm 8 is [i]“multicolored”[/i], if it contains each of the colors on the board. What’s the greatest number of corners with arm 8 which could be [i]“mutlticolored”[/i]?

2011 QEDMO 8th, 4

How many a) bishops b) horses can be positioned on a chessboard at most, so that no one threatens another?