This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 189

2001 Portugal MO, 4

During a game of chess, at a certain point, in each row and column of the board there is an odd number of pieces. Prove that the number of pieces that are on black squares is even. (Note: a chessboard has $8$ rows and $8$ columns)

1999 Tournament Of Towns, 6

A rook is allowed to move one cell either horizontally or vertically. After $64$ moves the rook visited all cells of the $8 \times 8$ chessboard and returned back to the initial cell. Prove that the number of moves in the vertical direction and the number of moves in the horizontal direction cannot be equal. (A Shapovalov, R Sadykov)

2012 Brazil Team Selection Test, 3

In chess, a king threatens another king if, and only if, they are on neighboring squares, whether horizontally, vertically, or diagonally . Find the greatest amount of kings that can be placed on a $12 \times 12$ board such that each king threatens just another king. Here, we are not considering part colors, that is, consider that the king are all, say, white, and that kings of the same color can threaten each other.

1992 IMO Longlists, 61

There are a board with $2n \cdot 2n \ (= 4n^2)$ squares and $4n^2-1$ cards numbered with different natural numbers. These cards are put one by one on each of the squares. One square is empty. We can move a card to an empty square from one of the adjacent squares (two squares are adjacent if they have a common edge). Is it possible to exchange two cards on two adjacent squares of a column (or a row) in a finite number of movements?

2010 Germany Team Selection Test, 2

For an integer $m\geq 1$, we consider partitions of a $2^m\times 2^m$ chessboard into rectangles consisting of cells of chessboard, in which each of the $2^m$ cells along one diagonal forms a separate rectangle of side length $1$. Determine the smallest possible sum of rectangle perimeters in such a partition. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

2017 Baltic Way, 8

A chess knight has injured his leg and is limping. He alternates between a normal move and a short move where he moves to any diagonally neighbouring cell. The limping knight moves on a $5 \times 6$ cell chessboard starting with a normal move. What is the largest number of moves he can make if he is starting from a cell of his own choice and is not allowed to visit any cell (including the initial cell) more than once?

1981 All Soviet Union Mathematical Olympiad, 304

Two equal chess-boards ($8\times 8$) have the same centre, but one is rotated by $45$ degrees with respect to another. Find the total area of black fields intersection, if the fields have unit length sides.

2014 Gulf Math Olympiad, 4

The numbers from $1$ to $64$ must be written on the small squares of a chessboard, with a different number in each small square. Consider the $112$ numbers you can make by adding the numbers in two small squares which have a common edge. Is it possible to write the numbers in the squares so that these $112$ sums are all different?

2013 Tournament of Towns, 5

Eight rooks are placed on a chessboard so that no two rooks attack each other. Prove that one can always move all rooks, each by a move of a knight so that in the final position no two rooks attack each other as well. (In intermediate positions several rooks can share the same square).

2019 Greece JBMO TST, 4

Consider a $8\times 8$ chessboard where all $64$ unit squares are at the start white. Prove that, if any $12$ of the $64$ unit square get painted black, then we can find $4$ lines and $4$ rows that have all these $12$ unit squares.

1998 Tournament Of Towns, 3

On an $8 \times 8$ chessboard, $17$ cells are marked. Prove that one can always choose two cells among the marked ones so that a Knight will need at least three moves to go from one of the chosen cells to the other. (R Zhenodarov)

2012 Chile National Olympiad, 1

What is the minimum number of movements that a horse must carry out on chess, on an $8\times 8$ board, to reach the upper right square starting at the lower left? Remember that the horse moves in the usual $L$-shaped manner.

2005 Tournament of Towns, 3

Originally, every square of $8 \times 8$ chessboard contains a rook. One by one, rooks which attack an odd number of others are removed. Find the maximal number of rooks that can be removed. (A rook attacks another rook if they are on the same row or column and there are no other rooks between them.) [i](6 points)[/i]

1984 All Soviet Union Mathematical Olympiad, 391

The white fields of $3x3$ chess-board are filled with either $+1$ or $-1$. For every field, let us calculate the product of neighbouring numbers. Then let us change all the numbers by the respective products. Prove that we shall obtain only $+1$'s, having repeated this operation finite number of times.

1963 All Russian Mathematical Olympiad, 033

A chess-board $6\times 6$ is tiled with the $2\times 1$ dominos. Prove that you can cut the board onto two parts by a straight line that does not cut dominos.

1987 Tournament Of Towns, (138) 3

Nine pawns forming a $3$ by $3$ square are placed in the lower left hand corner of an $8$ by $8$ chessboard. Any pawn may jump over another one standing next to it into a free square, i .e. may be reflected symmetrically with respect to a neighb our's centre (jumps may be horizontal , vertical or diagonal) . It is required to rearrange the nine pawns in another corner of the chessboard (in another $3$ by $3$ square) by means of such jumps. Can the pawns be thus re-arranged in the (a) upper left hand corner? (b) upper right hand corner? (J . E . Briskin)

2010 Lithuania National Olympiad, 3

In an $m\times n$ rectangular chessboard,there is a stone in the lower leftmost square. Two persons A,B move the stone alternately. In each step one can move the stone upward or rightward any number of squares. The one who moves it into the upper rightmost square wins. Find all $(m,n)$ such that the first person has a winning strategy.

1933 Eotvos Mathematical Competition, 2

Sixteen squares of an $8\times 8$ chessboard are chosen so that there are exactly lwo in each row and two in each column. Prove that eight white pawns and eight black pawns can be placed on these sixteen squares so that there is one white pawn and one black pawn in each row and in cach colunm.

1984 All Soviet Union Mathematical Olympiad, 390

The white fields of $1983\times 1984 $1983x1984 are filled with either $+1$ or $-1$. For every black field, the product of neighbouring numbers is $+1$. Prove that all the numbers are $+1$.

2014 Nordic, 4

A game is played on an ${n \times n}$ chessboard. At the beginning there are ${99}$ stones on each square. Two players ${A}$ and ${B}$ take turns, where in each turn the player chooses either a row or a column and removes one stone from each square in the chosen row or column. They are only allowed to choose a row or a column, if it has least one stone on each square. The first player who cannot move, looses the game. Player ${A}$ takes the first turn. Determine all n for which player ${A}$ has a winning strategy.

1963 Swedish Mathematical Competition., 2

The squares of a chessboard have side $4$. What is the circumference of the largest circle that can be drawn entirely on the black squares of the board?

1998 Tournament Of Towns, 3

What is the maximum number of colours that can be used to paint an $8 \times 8$ chessboard so that every square is painted in a single colour, and is adjacent , horizontally, vertically but not diagonally, to at least two other squares of its own colour? (A Shapovalov)

1974 IMO Longlists, 1

We consider the division of a chess board $8 \times 8$ in p disjoint rectangles which satisfy the conditions: [b]a)[/b] every rectangle is formed from a number of full squares (not partial) from the 64 and the number of white squares is equal to the number of black squares. [b]b)[/b] the numbers $\ a_{1}, \ldots, a_{p}$ of white squares from $p$ rectangles satisfy $a_1, , \ldots, a_p.$ Find the greatest value of $p$ for which there exists such a division and then for that value of $p,$ all the sequences $a_{1}, \ldots, a_{p}$ for which we can have such a division. [color=#008000]Moderator says: see [url]https://artofproblemsolving.com/community/c6h58591[/url][/color]

2021 Harvard-MIT Mathematics Tournament., 10

Let $n>1$ be a positive integer. Each unit square in an $n\times n$ grid of squares is colored either black or white, such that the following conditions hold: $\bullet$ Any two black squares can be connected by a sequence of black squares where every two consecutive squares in the sequence share an edge; $\bullet$ Any two white squares can be connected by a sequence of white squares where every two consecutive squares in the sequence share an edge; $\bullet$ Any $2\times 2$ subgrid contains at least one square of each color. Determine, with proof, the maximum possible difference between the number of black squares and white squares in this grid (in terms of $n$).

2018 Peru Cono Sur TST, 6

Let $n$ be a positive integer. In an $n \times n$ board, two opposite sides have been joined, forming a cylinder. Determine whether it is possible to place $n$ queens on the board such that no two threaten each other when: $a)\:$ $n=14$. $b)\:$ $n=15$.